K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2019

#It's the moment when you're in good mood, you accidentally click back =.=

1) Calculate

\(P=1\frac{1}{3}.1\frac{1}{8}.1\frac{1}{15}....1\frac{1}{63}.1\frac{1}{80}\)

\(=\frac{4}{3}.\frac{9}{8}.\frac{16}{15}....\frac{64}{63}.\frac{81}{80}\)

\(=\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}....\frac{8.8}{7.9}.\frac{9.9}{8.10}\)

\(=\frac{2.9}{10}=\frac{9}{5}\)

7 tháng 8 2019

ta có: 10010 + 1 > 10010 - 1

⇒ A = \(\frac{100^{10}+1}{100^{10}-1}< \frac{100^{10}+1-2}{100^{10}-1-2}=\frac{100^{10}-1}{100^{10}-3}=B\)

vậy A < B

1 tháng 9 2019

Gọi A=\(\frac{1}{100.99}-\frac{1}{99.98}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

A= -(\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\))

A=-(1-\(\frac{1}{100}\))

A=-(\(\frac{99}{100}\))

A=-99/100

1 tháng 9 2019

\(\frac{1}{100.99}-\frac{1}{99.98}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(\Leftrightarrow-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)

\(\Leftrightarrow\)\(-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)

\(\Leftrightarrow-\left(1-\frac{1}{100}\right)\)

\(\Leftrightarrow-\left(\frac{99}{100}\right)\)

\(=-\frac{99}{100}\)

5 tháng 9 2017

bài này dễ lắm,mình giải đây:

C = \(\frac{1}{100}\)\(\frac{1}{100.99}\)-\(\frac{1}{99.98}\)\(\frac{1}{98.97}\)- ... - \(\frac{1}{3.2}\)\(\frac{1}{2.1}\)

C = \(\frac{-1}{1.2}\)\(\frac{-1}{2.3}\) + ... +\(\frac{-1}{98.99}\)\(\frac{1}{99.100}\)\(\frac{1}{100}\)

C = \(\frac{-1}{1}\)\(\frac{-1}{2}\)

Mình bận rồi , phần sau tự làm nha.