1, Số nguyên a phải có điều kiện gì để ta có phân số ?
a, \(\frac{32}{a-1}\) b, \(\frac{a-2}{5}\)
2, Số nguyên a phải có điều kiện gì để các phân số sau là số nguyên:
a, \(\frac{a+1}{3}\) b, \(\frac{a-2}{5}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) số nguyên a phải có điều kiện gì để ta có phân số ?
a) \(\frac{32}{a-1}\)
Để ta có phân số thì \(_{a-1\ne0}\).
Kết hợp với điều kiện a là số nguyên theo đầu bài ta tìm được a là số nguyên khác 1 .
Vậy với \(_{a\ne1}\)thì \(_{\frac{32}{a-1}}\)là phân số.
b)\(\frac{a}{5a+30}\)=\(\frac{a}{5\left(a+6\right)}\)
Điều kiện để 5(a+6) là phân số là:
\(_{a+6\ne0\Leftrightarrow a\ne-6}\)
Vậy với \(_{a\ne6}\)thì \(_{\frac{a}{5a+30}}\)là phân số.
2) tìm các số nguyên x để các phân số sau là số nguyên :
a) \(\frac{13}{x-1}\)
Để \(_{\frac{13}{x-1}}\) là số nguyên thì 13 phải chia hết cho x-1.nghĩa là :
x-1 thuộc (+-1,+-13)
=>x thuộc (0,2,-12,14)
Vậy x thuộc (0,2,-12,14)thì 13/x-1 là số nguyên
b) \(\frac{x+3}{x-2}\)
Ta có :
\(_{\frac{x+3}{x-2}}\)= \(_{\frac{x-2+5}{x-2}}\)= \(_{\frac{1+5}{x-2}}\)
để \(_{\frac{x+3}{x-2}}\) là số nguyên thì \(_{\frac{5}{x-2}}\) là số nguyên .
Nghĩa là 5 chia hết cho x-2,hay x-2 thuộc (+-1,+-5)
=>x thuộc (1,3,-3,8)
Vậy x thuộc (1,3-3,8) thì \(_{\frac{x+3}{x-2}}\)là số nguyên.
a,để phân số là số nguyên thì a+1 chia hết cho 3
nên a có dạng 3k+2 (k nguyên)
b,để phân số là số nguyên thì a-2 chia hết cho 5
nên a có dạng 5h+3(h nguyên)
tick mik nha
a) \(\dfrac{a+1}{3}\in Z\Rightarrow a+1\in B\left(3\right)=\left\{3;-3;6;-6;...\right\}\)
\(\Rightarrow a\in\left\{2;-4;5;-7;...\right\}\)
b) \(\dfrac{a-2}{5}\in Z\Rightarrow a-2\in B\left(5\right)=\left\{5;-5;10;-10;...\right\}\)
\(\Rightarrow a\in\left\{7;-3;12;-8;...\right\}\)
2) tìm các số nguyên x để các phân số sau là số nguyên :
a) 13/x -1
Để 13/x-1 là số nguyên thì 13 phải chia hết cho x-1.nghĩa là :
x-1 thuộc (+-1,+-13)
=>x thuộc (0,2,-12,14)
vậy x thuộc (0,2,-12,14)thì 13/x-1 là số nguyên
b) x+ 3 /x-2
ta có x+3/x-2=x-2+5/x-2=1+5/x-2
để x+3/x-2 là số nguyên thì 5/x-2 là số nguyên .
nghĩa là 5 chia hết cho x-2,hay x-2 thuộc (+-1,+-5)
=>x thuộc (1,3,-3,8)
vậy x thuộc (1,3-3,8) thì x+3/x-2 là số nguyên
1) số nguyên a phải có điều kiện gì để ta có phân số ?
a) 32/a-1
Để ta có phân số thì a-1 phải là số nguyên khác 0 .
Kết hợp với điều kiện a là số nguyên theo đầu bài ta tìm được a là số nguyên khác 1
Vậy a là số nguyên khác 1
b)a/5a+30
Để có phân số thì a là số nguyên (thoả mãn theo đầu bài ) và 5a+30 là số nguyên .
=>5(a+6) là số nguyên
Làm tương tự phần a ta được a là số nguyên khác -6
vậy a là số nguyên khác -6
2) tìm các số nguyên x để các phân số sau là số nguyên :
a) 13/x -1
Để 13/x-1 là số nguyên thì 13 phải chia hết cho x-1.nghĩa là :
x-1 thuộc (+-1,+-13)
=>x thuộc (0,2,-12,14)
vậy x thuộc (0,2,-12,14)thì 13/x-1 là số nguyên
b) x+ 3 /x-2
ta có x+3/x-2=x-2+5/x-2=1+5/x-2
để x+3/x-2 là số nguyên thì 5/x-2 là số nguyên .
nghĩa là 5 chia hết cho x-2,hay x-2 thuộc (+-1,+-5)
=>x thuộc (1,3,-3,8)
vậy x thuộc (1,3-3,8) thì x+3/x-2 là số nguyên
a, Để phân số trên là số nguyên
=> a+1 chia hết cho 3
=> a+1 thuộc B(3)
=> a+1 = 3k
=> a = 3k-1
=> a = 3(k-1) + 3 - 1
=> a = 3(k-1)+2
=> Để phân số trên là phân số
=> a chia 3 dư 2
b, Để phân số trên là số nguyên
=> a-2 chia hết cho 5
=>.a-2 thuộc B(5)
=> a-2 = 5k
=> a = 5k+2
=> Để phân số trên nguyên
=> a chia 5 dư 2
a) Để \(\frac{a+1}{3}\)là số nguyên thì a+1 chia hết cho 3
=> a+1 thuộc B (3)={0;3;6;9;....}
=> a={-1;2;5;8;....}
b) Để \(\frac{a-2}{5}\)là số nguyên thì a-2 chia hết cho 5
=> a-2 thuộc B (5)={0;5;10;...}
=> a={2;7;12;....}
1.
a. Để có phân số $\frac{32}{a-1}$ thì $a-1\neq 0$
$\Rightarrow a\neq 1$
b. $\frac{a-2}{5}$ là phân số với mọi số nguyên $a$.
2.
a. $\frac{a+1}{3}$ là phân số với mọi $a$ nguyên do $3\neq 0$
b.
$\frac{a-2}{5}$ là phân số với mọi $a$ nguyên do $5\neq 0$