2)cho hệ {
\(\hept{\begin{cases}3x+my=4\\x+y=1\end{cases}}\)
a) Tìm m để hệ có nghiệm duy nhất,vô số nghiệm
b) Tìm m để hệ có nghiệm (x;y) thõa mãn x<0 và y>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:
a)\(\hept{\begin{cases}nx+x=5
\\x+y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x.\left(n+1\right)=5\left(1\right)\\x+y=1\end{cases}}\)
\(\hept{mx+y=3m-1x+my=m+1}\hept{\begin{cases}y=3m-1-mx\\x+m\left(3m-1-mx\right)=m+1y\end{cases}}\)
\(\left(1\right)\hept{\begin{cases}x+3m^2-m-m^2+x=m+1\\x\left(1-m^2\right)=-3m^2+2m+1\\\left(m-1\right)\left(m+1\right).x=\left(3m-1\right)\left(m-1\right)\end{cases}}\)
\(TH_1\): Để hệ có một nghiệm duy nhất ta có :
- m -1 khác 0
- m + 1 khác 0
- \(x=\frac{3m-1}{m+1}\)
\(TH_2\): Để hệ có vô nghiệm thì
\(\hept{\begin{cases}m-1=0\\m-1\end{cases}}\)
\(TH_3:\)Để hệ có vô số nghiệm thì :
\(\hept{\begin{cases}m+1=0\\m-1=0\end{cases}}\)
a) Hpt có nghiệm duy nhất khi \(m\ne3;m\ne4\)
Hpt có vô số nghiệm khi \(\hept{\begin{cases}m=3\\m=4\end{cases}}\)(vô lí). Vậy hệ không thể có vô số nghiệm
b) \(\hept{\begin{cases}3x+my=4\\x+y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}3\left(1-y\right)+my=4\\x=1-y\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(m-3\right)y=1\\x=1-y\end{cases}}\)
\(\cdot m=3\Rightarrow\hept{\begin{cases}0=1\\x=1-y\end{cases}}\)(vô lí)
\(\cdot m>3\Rightarrow\hept{\begin{cases}y=\frac{1}{m-3}>0\\x=1-\frac{1}{m-3}=\frac{m-4}{m-3}\end{cases}}\)
Để \(x< 0\)thì \(\frac{m-4}{m-3}< 0\). Mà \(m-3>0\Leftrightarrow m>3\)nên \(m-4< 0\Leftrightarrow m< 4\)
\(\Rightarrow3< m< 4\)
\(\cdot m< 3\Rightarrow\hept{\begin{cases}y=\frac{1}{m-3}< 0\\x=1-\frac{1}{m-3}=\frac{m-4}{m-3}\end{cases}}\)(loại do \(y< 0\))
Vậy \(3< m< 4\)thì thỏa ycbt