Cho tam giác ABC vuông tại A (AB < AC), phân giác AD. Từ D vẽ một đường thẳng vuông góc với BC cắt AC tại M. Tính góc MBD
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
5 tháng 4 2021
Kẻ DP⊥AB,DQ⊥AC(P∈AB,Q∈AC)
Dễ chứng minh APDQ là hình vuông nên AP = PD = DQ = QA và PDQ = 900
Xét ΔDPBvà ΔDQMcó:
DPB = DQM(= 900 )
DP = DQ (cmt)
BDP = MDQ(cùng phụ với góc PDM)
Do đó ΔDPB = ΔDQM(cgv−gnk)
Suy ra DB = DM ( hai cạnh tương ứng) Kết hợp với BDM = 900
suy ra tam giác BDM vuông cân tại D
Vậy MBD=450
29 tháng 1 2018
âu trả lời hay nhất: xét tứ giác ABDM
có ^A=90 o ( tam giác ABC vuông tại A theo gt )
^D = 90 o ( gt )
=> ^A + ^D = 180 o
=> t/g ABDM là t/g nội tiếp ( dhnb )
=> góc BAD = góc BMD ( góo nội tiếp cùng chắn cung BD )
lại có ^ BAD = 1/2 ^ BAC = 1/2 90 o = 45 o
=> ^BMD = 45 o
p/s : kham khảo
Kẻ \(DP\perp AB,DQ\perp AC\left(P\in AB,Q\in AC\right)\)
Dễ chứng minh APDQ là hình vuông nên AP = PD = DQ = QA và \(\widehat{PDQ}=90^0\)
Xét \(\Delta DPB\)và \(\Delta DQM\)có:
\(\widehat{DPB}=\widehat{DQM}\)(= 900)
DP = DQ (cmt)
\(\widehat{BDP}=\widehat{MDQ}\)(cùng phụ với góc PDM)
Do đó \(\Delta DPB\)\(=\Delta DQM\left(cgv-gnk\right)\)
Suy ra DB = DM ( hai cạnh tương ứng)
Kết hợp với \(\widehat{BDM}=90^0\)suy ra tam giác BDM vuông cân tại D
Vậy \(\widehat{MBD}=45^0\)
Bài này làm như thế nào ? Người ta phải ốp 4 bức tường của mott bể nước ,mỗi bức tường cần 10 viên gạch hình vuông có cạnh 9 cm. Hỏi cả 4 bức tường có diện tích bao nhiêu xăng - ti - mét vuông ?