Cho tg abc . Kẻ ah vuông góc với bc. Biết ab =13cm ạh =12 cm hc=16cm
a) tính độ dài các đoạn thẳng ac,bc
b)tam giác abc la tg gì ? Vì sao?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
∆ABC vuông tại A, AH, vuông góc BC
=> AB.AH = HB.AC
=> AB = 15Ta có: BC^2 = AB^2 + AC^2=> BC = 25=> HB = BC - BH = 25-9 = 16
a) Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AH^2+BH^2=AB^2\)
\(\Leftrightarrow AB^2=9^2+12^2=225\)
hay AB=15(cm)
Vậy: AB=15cm
Tìm gì hả cậu . HB thì làm ntn . Tự vẽ hình .
Áp dụng đính lý Pytago vào tam giác ABh vuông tại H,ta có :
\(AB^2-AH^2=HB^2\)
\(\Leftrightarrow13^2-12^2=HB^2\)
\(\Leftrightarrow169-144=HB^2\)
\(HB^2=25\)
\(\Rightarrow HB=5cm\)
a) Xét ΔABC vuông tại A và ΔHAC vuông tại H có
\(\widehat{ACH}\) chung
Do đó: ΔABC\(\sim\)ΔHAC(g-g)
b) Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:
\(AC^2=AH^2+HC^2\)
\(\Leftrightarrow HC^2=AC^2-AH^2=30^2-24^2=324\)
hay HC=18(cm)
Ta có: ΔABC∼ΔHAC(cmt)
nên \(\dfrac{AB}{HA}=\dfrac{BC}{AC}=\dfrac{AC}{HC}\)(Các cặp cạnh tương ứng tỉ lệ)
\(\Leftrightarrow\dfrac{AB}{24}=\dfrac{BC}{30}=\dfrac{30}{18}=\dfrac{5}{3}\)
Suy ra: \(\left\{{}\begin{matrix}\dfrac{AB}{24}=\dfrac{5}{3}\\\dfrac{BC}{30}=\dfrac{5}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=40\left(cm\right)\\BC=50\left(cm\right)\end{matrix}\right.\)
Vậy: HC=18cm; AB=40cm; BC=50cm
Vẽ hơi xấu
Tam giác AHC vuông tại H
Áp dụng định lí py-ta-go ta có :
\(AC=\sqrt{AH^2+CH^2}=\sqrt{12^2+16^2}=\sqrt{400}=20\left(cm\right)\)
Tam giác AHB vuông tại H
Áp dụng định lí py-ta-go ta có :
\(BH=\sqrt{AB^2-AH^2}=\sqrt{13^2-12^2}=\sqrt{25}=5\left(cm\right)\)
\(\Rightarrow BC=BH+HC=5+16=21\left(cm\right)\)
AC^2=AH^2+HC^2(py ta go)
AC^2=144+256=200 cm
suy ra AC=20 cm
AB^2=AH^2+BH^2
BH^2=AB^2-AH^2
BH^2=1169-144=25cm
BH=5cm
Mà BH+HC=BC suy ra 5+16=21
vạy AC=20 cm, BC=21cm
1: Xet ΔABC và ΔHBA có
góc ABC chung
góc BAC=góc BHA
=>ΔABC đồng dạng với ΔHBA
2: \(BC=\sqrt{12^2+16^2}=20\)
AH=16*12/20=9,6
BH=12^2/20=7,2
3: góc AMN=góc HMB=90 độ-góc CBN
góc ANM=90 độ-góc ABN
mà góc CBN=góc ABN
nên góc AMN=góc ANM
=>ΔAMN cân tại A
a: BC=10cm
b: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{B}\) chung
Do đó: ΔABC∼ΔHBA
c: AH=4,8cm
BH=3,6cm
CH=6,4cm
a: ΔABC cân tại A có AH là phân giác
nên H là trung điểm của BC
ΔABC cân tại A có AH là trung tuyến
nên AH vuông góc BC
b: BH=CH=12/2=6cm
AH=căn AB^2-AH^2=8cm
c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
góc DAH=góc EAH
=>ΔADH=ΔAEH
=>AD=AE và HD=HE
=>ΔHDE cân tại H
d: Xét ΔABC có AD/AB=AE/AC
nên DE//BC
Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:
\(AC^2=AH^2+HC^2\)
\(\Leftrightarrow AC^2=12^2+16^2=400\)
hay AC=20(cm)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+HB^2\)
\(\Leftrightarrow HB^2=AB^2-AH^2=13^2-12^2=25\)
hay HB=5(cm)
Ta có: HB+HC=BC(H nằm giữa B và C)
nên BC=5+16=21(cm)
Vậy: AC=20cm; BC=21cm