K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2019

a) Vì ABCD là hình thang nên ta có:

AB // CD (gt) (1)

\(\Rightarrow\widehat{D_1}=\widehat{B_1}\) (2 góc so le trong) (2)

Và \(\widehat{C_1}=\widehat{A_1}\) (2 góc so le trong) (3)

Xét \(\Delta IMD\) và \(\Delta IAB\) ta có:

\(\widehat{I_1}=\widehat{I_2}\) (2 góc đối đỉnh) (4)

Từ (2), (4) \(\Rightarrow\Delta IMD\sim\Delta IAB\) (G-G) (5)

Xét \(\Delta KMC\) và \(\Delta KBA\) ta có:

\(\widehat{K_1}=\widehat{K_2}\) (2 góc đối đỉnh) (6)

Từ (3), (6) \(\Rightarrow\Delta KMC\sim\Delta KBA\) (G-G) (7)

Từ (5) \(\Rightarrow\dfrac{IM}{IA}=\dfrac{DM}{AB}\) (8)

Từ (7) \(\Rightarrow\dfrac{KM}{KB}=\dfrac{MC}{AB}\) (9)

Mà DM = MC (M là trung điểm của CD) (10)

\(\Rightarrow\dfrac{DM}{AB}=\dfrac{MC}{AB}\) (11)

Từ (8), (9), (11) \(\Rightarrow\dfrac{IM}{IA}=\dfrac{KM}{KB}\) (12)

Nên IK // AB (định lý Ta-lét đảo) (13)

b) Từ (1), (13) \(\Rightarrow\) IK // CD (14)

Từ (14) \(\Rightarrow\) EI // DM, áp dụng hệ quả của định lý Ta-lét đối với \(\Delta ADM\) ta có:

\(\dfrac{AI}{AM}=\dfrac{EI}{DM}\)(15)

Từ (14) \(\Rightarrow KF\)// MC, áp dụng hệ quả của định lý Ta-lét đối với \(\Delta BCM\) ta có:

\(\dfrac{BK}{BM}=\dfrac{KF}{MC}\) (16)

Từ (14) \(\Rightarrow\) IK // MC, áp dụng hệ quả của định lý Ta-lét đối với \(\Delta ACM\) ta có:

\(\dfrac{AI}{AM}=\dfrac{IK}{MC}\) (17)

Từ (14) \(\Rightarrow IK\)// DM, áp dụng hệ quả của định lý Ta-lét đối với \(\Delta BDM\) ta có:

\(\dfrac{BK}{BM}=\dfrac{IK}{DM}\) (18)

Từ (10) \(\Rightarrow\dfrac{IK}{MC}=\dfrac{IK}{DM}\) (19)

Từ (17), (18), (19) \(\Rightarrow\dfrac{AI}{AM}=\dfrac{BK}{BM}\) (20)

Từ (15), (16), (17), (20) \(\Rightarrow\dfrac{EI}{DM}=\dfrac{KF}{MC}=\dfrac{IK}{MC}\) (21)

Từ (10), (21) \(\Rightarrow EI=KF=IK\)

18 tháng 2 2019

A B C D K I M E F

Ta có: AB//CD => AB//DM 

=> \(\frac{AI}{IM}=\frac{AB}{DM}\)

AB// MC

=> \(\frac{BK}{KM}=\frac{AB}{MC}\)

Mà DM=MC

=> \(\frac{AI}{IM}=\frac{BK}{KM}\)=> IK//AB

b) IK//AB 

=> EI//DM => \(\frac{EI}{DM}=\frac{AI}{AM}\)

IK//MC => \(\frac{AI}{AM}=\frac{IK}{MC}=\frac{BK}{BM}\)

KF//MC => \(\frac{BK}{BM}=\frac{KF}{MC}\)

=> \(\frac{EI}{DM}=\frac{IK}{MC}=\frac{KF}{MC}\)Mà DM =MC 

=> EI=IK=KF

6 tháng 2 2023

a) Vì AB // CD áp dụng định lý Ta-lét ta có:

\(\dfrac{IM}{IA}\)=\(\dfrac{MD}{AB}\) 

                   \(\Rightarrow\)  \(\dfrac{IM}{IA}\)=\(\dfrac{KM}{KB}\) (Vì MC = MD) 

\(\dfrac{KM}{KB}\)=\(\dfrac{MC}{AB}\)

  Do đó theo định lý Ta-lét đảo ta có IK // AB 

Vì IK // AB // CD nên theo định lý Ta-lét :

\(\dfrac{IE}{DM}\)=\(\dfrac{AI}{AM}\)=\(\dfrac{BI}{BD}\)=\(\dfrac{IK}{DM}\)=> EI = IK 

Tương tự ta có FK =IK nên ta có EI = IK = KF

14 tháng 9 2017

Ban có đáp án câu này chưa cho mình xin với. Mình cũng đang học

8 tháng 11 2017

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

19 tháng 1 2018

ĐÂY LÀ TOÁN MÀ CÓ PHẢI NỘI DUNG KHÁC ĐÂU

15 tháng 4 2019

ĐỪNG ẤN ĐỌC THÊM

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

Đã kêu đừng ấn mà đéo nghe :))))

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.Thôi, lướt tiếp đi

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

Lần này nữa thôi :)))

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.Cố lên 

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

3 tháng 5 2016

tự vẽ hình ák

a)Ta có AB//DM-> AI/IM=AB/DM;   AB//CM-> BK/KM=AB/CM ; mà DM=CM

->AI/IM=BK/KM -> IK//AB( định lí talet đảo)

b)Ta có IK//CD -> IK/MC=AK/AC(1); KF//MC-> KF/MC=BK/BM; AB//CM -> AK/AC=BK/BM

->KF=IK(4)

Ta lại có EI//DM-> EI/DM=AI/AM(2); IK//MC-> AI/AM=AK/AC(3)

(1)(2)(3)->IK=IE(5)

(4)(5)->EI=IK=KF

30 tháng 10 2017

Talet chỉ dùng cho tam giac thôi bạn

a: Xét ΔKAB và ΔKCM có

góc KAB=góc KCM

góc AKB=góc CKM

=>ΔKAB đồng dạng với ΔKCM

=>KB/KM=AB/CM=AB/MD

Xét ΔIAB và ΔIMD có

góc IAB=góc IMD

góc AIB=góc MID

=>ΔIAB đồng dạng với ΔIMD

=>IA/IM=AB/MD

=>IA/IM=KB/KM

=>MI/IA=MK/KB

Xét ΔMAB có MI/IA=MK/KB

nên IK//AB

b: Xét ΔADM có EI//DM

nên EI/DM=AI/AM

=>EI/CM=AI/AM

Xét ΔBMC có KF//MC

nên KF/MC=BK/BM

Xét ΔMAB có IK//AB

nên IK/AB=MK/MB=MI/MA

=>BK/BM=AI/AM

=>EI/DM=KF/DM

=>EI=KF

c: Xét ΔOAN và ΔOCM có

góc OAN=góc OCM

góc AON=góc COM

=>ΔOAN đồng dạng với ΔOCM

=>OA/OC=AN/CM

Xét ΔOAB và ΔOCD có

góc OAB=góc OCD

góc AOb=góc COD

=>ΔOAB đồng dạng với ΔOCD

=>OA/OC=AB/CD

=>AB/CD=AN/CM

=>AB/AN=CD/CM=2

=>AB=2AN

=>N là trung điểm của AB