K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2019

để bất phương trình trên vô nghiệm \(\Leftrightarrow\left\{{}\begin{matrix}\Delta'\le0\\1>0\end{matrix}\right.\) \(\Leftrightarrow\left(m-2\right)^2-\left(2m-5\right)\le0\) \(\Leftrightarrow m^2-6m+9\le0\) \(\Leftrightarrow x=3\)

vậy x=3

4 tháng 3 2021

a, Yêu cầu bài toán thỏa mãn khi \(\left\{{}\begin{matrix}m-1>0\\\Delta'=m^2-4m+4+m-1< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>1\\\left(m-\dfrac{3}{2}\right)^2< -\dfrac{3}{4}\end{matrix}\right.\)

\(\Leftrightarrow\) vô nghiệm

Vậy không tồn tại giá trị m thỏa mãn

b, Yêu cầu bài toán thỏa mãn khi phương trình \(\left(m-1\right)x^2+2\left(m-2\right)x-1< 0\) có nghiệm với mọi x

\(\Leftrightarrow\left\{{}\begin{matrix}m-1< 0\\\Delta'=m^2-3m+3< 0\end{matrix}\right.\)

\(\Leftrightarrow\) vô nghiệm

Vậy không tồn tại giá trị m thỏa mãn

26 tháng 11 2021

\(a,x^2-\left(2m-3\right)x+m^2=0-vô-ngo\)

\(\Leftrightarrow\Delta< 0\Leftrightarrow[-\left(2m-3\right)]^2-4m^2< 0\Leftrightarrow m>\dfrac{3}{4}\)

\(b,\left(m-1\right)x^2-2mx+m-2=0\)

\(m-1=0\Leftrightarrow m=1\Rightarrow-2x-1=0\Leftrightarrow x=-0,5\left(ktm\right)\)

\(m-1\ne0\Leftrightarrow m\ne1\Rightarrow\Delta'< 0\Leftrightarrow\left(-m\right)^2-\left(m-2\right)\left(m-1\right)< 0\Leftrightarrow m< \dfrac{2}{3}\)

\(c,\left(2-m\right)x^2-2\left(m+1\right)x+4-m=0\)

\(2-m=0\Leftrightarrow m=2\Rightarrow-6x+2=0\Leftrightarrow x=\dfrac{1}{3}\left(ktm\right)\)

\(2-m\ne0\Leftrightarrow m\ne2\Rightarrow\Delta'< 0\Leftrightarrow[-\left(m+1\right)]^2-\left(4-m\right)\left(2-m\right)< 0\Leftrightarrow m< \dfrac{7}{8}\)

 

 

 

(m-2)x^2+2(m-2)x+m+4>=0

TH1: m=2

=>6>=0(nhận)

TH2: m<>2

Δ=(2m-4)^2-4(m-2)(m+4)

=4m^2-16m+16-4(m^2+2m-8)

=4m^2-16m+16-4m^2-8m+32

=-24m+48

Để BPTVN thì -24m+48<0

=>-24m<-48

=>m>2

2 tháng 2 2022

Để pt (2) vô nghiệm khi 

\(\Delta'=m^2-4< 0\Leftrightarrow m^2< 4\Leftrightarrow-2< m< 2\)

13 tháng 3 2021

Bpt \(\left(m-1\right)x^2+2\left(m+2\right)x+2m+2\ge\) vô nghiệm

\(\Leftrightarrow\left\{{}\begin{matrix}m-1< 0\\\Delta'=\left(m+2\right)^2-\left(m-1\right)\left(2m+2\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 1\\-m^2+4m+6< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 1\\\left[{}\begin{matrix}m< 2-\sqrt{10}\\m>\sqrt{2+\sqrt{10}}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow m< 2-\sqrt{10}}\)

8 tháng 8 2023

PT vô nghiệm <=> \(\Delta'< 0\)

<=> \(\left(m+1\right)^2-2m^2-2m-1< 0\)

<=> \(m^2+2m+1-2m^2-2m-1< 0\)

<=> \(-m^2< 0\)

\(\Leftrightarrow m\ne0\)

Δ=(2m+2)^2-4(2m^2+2m+1)

=4m^2+8m+4-8m^2-8m-4

=-4m^2

Để phương trình vô nghiệm thì -4m^2<0

=>m^2>0

=>m<>0