K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2019

ko biết mới học lớp 6 hihi

17 tháng 2 2019

Tớ lp 6 nek -__-

Ta có: (x+y-3)^4>=0

(x-2y)^2>=0

=> Q >= 2012=>Qmin=2012

Vậy: Qmin=2012. Dấu "=" xảy ra khi: x=2;y=1

11 tháng 8 2018

giải nhanh đi nhé mik cần gấp ai lm đủ đúng hết mik k mun cho nha giải đủ các bước nhé cảm ưn các bạn trước giúp mik nha^.^><hihiii

13 tháng 8 2018

1)  \(A=x^2+2x+3=\left(x+1\right)^2+2 \)

vi \(\left(x+1\right)^2\ge0\)(voi moi x)

    \(\Rightarrow\left(x+1\right)^2+2\ge2\)(voi moi x)

Vay GTNN cua A =2 khi x=-1

2)  Goi 2 so nguyen lien tiep do la x va x+1

TDTC x+1-x=1

Vi 1 la so le nen x+1-x la so le 

Vay .......

3) \(\left(x-y\right)^2-\left(x+y\right)^2=\left(x-y-x-y\right)\left(x-y+x+y\right)\)

\(=-2y\cdot2x=-4xy\)(dpcm)

4) \(Q=-x^2+6x+1=-\left(x^2-6x-1\right)=-\left(x^2-6x+9-10\right)=-\left(x-3\right)^2+10\)

Vi \(\left(x-3\right)^2\ge0\)(voi moi x)

\(\Rightarrow-\left(x-3\right)^2\le0\)(voi moi x)

\(\Rightarrow-\left(x-3\right)^2+10\le10\)(voi moi x)

Vay GTLN cua Q=10 khi x=3

28 tháng 3 2019

a. giá trị nhỏ nhất của B=3 khi và chỉ khi x=y=1006

22 tháng 5 2021

`A=x^4-6x^3+18x^2-6xy+y^2+2012`
`=x^4-6x^3+9x^2+9x^2-6xy+y^2+2012`
`=(x^2-x)^2+(3x-y)^2+2012>=2012`
Dấu "=" xảy ra khi:
$\begin{cases}x=x^2\\y=3x\end{cases}$
`<=>` $\left[ \begin{array}{l}\begin{cases}x=0\\y=3x=0\\\end{cases}\\\begin{cases}x=1\\y=3x=3\\\end{cases}\end{array} \right.$
Vậy `min_A=2012<=>` $\left[ \begin{array}{l}x=y=0\\\begin{cases}x=1\\y=3\end{cases}\end{array} \right.$

11 tháng 9 2021

\(Q=x^2+2y^2+2z^2+2xy-2yz-2xz-2y+4z+5=\left[\left(x^2+2xy+y^2\right)-2z\left(x+y\right)+z^2\right]+\left(y^2-2y+1\right)+\left(z^2+4z+4\right)=\left(x+y-z\right)^2+\left(y-1\right)^2+\left(z+2\right)^2\ge0\)

\(minQ=0\Leftrightarrow\)\(\left\{{}\begin{matrix}x=-3\\y=1\\z=-2\end{matrix}\right.\)

11 tháng 9 2021

`Q=x^2+2y^2+2z^2+2xy-2yz-2xz-2y+4z+5`

`Q=(x^2+y^2-z^2+2xy-2yz-2xz)+(y^2-2y+1)+(z^2+4z+4)`

`Q=(x+y-z)^2+(y-1)^2+(z+2)^2`

Ta thấy :

`(x+y-z)^2>=0`

`(y-1)^2>=0`

`(z+2)^2>=0`

`=>(x+y-z)^2+(y-1)^2+(z+2)^2>=0`

Dấu = xảy ra 

`<=>` $\begin{cases}x+y-z=0\\y-1=0\\z+2=0\end{cases}$

`<=>` $\begin{cases}x=-3\\y=1\\z=-2\end{cases}$

30 tháng 11 2017

Ta có :

\(\left(-x+y-3\right)^4\ge0\)

\(\left(x-2y\right)^2\ge0\)

\(\Rightarrow P=\left(-x+y-3\right)^4+\left(x-2y\right)^2+2012\ge2012\)

Dấu " = " xảy ra khi \(\left(-x+y-3\right)^4=0\)vs \(\left(x-2y\right)^2=0\)

nên : * \(-x+y-3=0\)và \(x-2y=0\)

\(\Rightarrow y-x=3\)vs \(x=2y\)

\(\Rightarrow x=y-3\)(1)   vs \(x=2y\)(2)

Từ (1) vs (2), ta có : \(y-3=2y\)

\(\Rightarrow y=3\)

\(\Rightarrow x=y-3=3-3=0\)

\(\Rightarrow Min\) \(P=2012\) khi x=0 vs y=3.

6 tháng 3 2019

tìm GTNN của P=(X-2y)^2+(y-2012)^2012

18 tháng 2 2019

Lời giải

Do \(\left(x-2y\right)^2\ge0;\left(y-2012\right)^{2012}\ge0\)

Cộng theo vế hai BĐT trên,suy ra \(P\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-2y=0\\y-2012=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2y\\y=2012\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4024\\y=2012\end{cases}}\)

Vậy \(P_{min}=0\Leftrightarrow\hept{\begin{cases}x=4024\\y=2012\end{cases}}\)

19 tháng 2 2021

câu này easy thôi

3 tháng 9 2021

Từ gt ta có x^2+y^^2=xy+1

=>P=(x^2+y^2)^2-2x^2y^2-x^2y^2

=(xy+1)2-2x2y2-x2y2

=x2y2+xy+1-3x2y2=-2x2y2+xy+1

=......

NV
6 tháng 9 2021

\(1=x^2+y^2-xy\ge2xy-xy=xy\Rightarrow xy\le1\)

\(1=x^2+y^2-xy\ge-2xy-xy=-3xy\Rightarrow xy\ge-\dfrac{1}{3}\)

\(\Rightarrow-\dfrac{1}{3}\le xy\le1\)

\(P=\left(x^2+y^2\right)^2-2\left(xy\right)^2-\left(xy\right)^2=\left(xy+1\right)^2-3\left(xy\right)^2=-2\left(xy\right)^2+2xy+1\)

Đặt \(xy=t\in\left[-\dfrac{1}{3};1\right]\)

\(P=f\left(t\right)=-2t^2+2t+1\)

\(f'\left(t\right)=-4t+2=0\Rightarrow t=\dfrac{1}{2}\)

\(f\left(-\dfrac{1}{3}\right)=\dfrac{1}{9}\) ; \(f\left(\dfrac{1}{2}\right)=\dfrac{3}{2}\) ; \(f\left(1\right)=1\)

\(\Rightarrow P_{max}=\dfrac{3}{2}\) ; \(P_{min}=\dfrac{1}{9}\)