K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2019

\(\frac{1}{a+2}=\frac{2}{a+6}\)

\(\Rightarrow x+6=2\left(a+2\right)\)

\(\Rightarrow x+6=2x+4\)

\(\Rightarrow-x=-2\)

\(\Rightarrow x=2\)

17 tháng 2 2019

a) \(\frac{1}{a+2}=\frac{2}{a+6}\)

=> a + 6 = 2(a + 2)

=> a + 6 = 2a + 4

=> a - 2a = 4 - 6

=> -a = -2

=> a = 2

c) \(\frac{3a-7}{a-1}=2\)

=> 3a - 7 = 2(a - 1)

=> 3a - 7 = 2a - 2

=> 3a - 2a = -2 + 7

=> a = 5

22 tháng 5 2020

Bó tay!!! 🐷

22 tháng 5 2020

chuẩn

25 tháng 3 2020

Ta CM BĐT phụ sau: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

Ta có: \(\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}},a+b\ge2\sqrt{ab}\)( co si với a,b>0)

Suy ra \(\left(\frac{1}{a}+\frac{1}{b}\right)\left(a+b\right)\ge4\RightarrowĐPCM\)\(\Rightarrow\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\left(1\right)\)

a/Áp dụng (1) có

\(\frac{1}{a+b+2c}\le\frac{1}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)\left(2\right)\).Tương tự ta cũng có:

\(\frac{1}{b+c+2a}\le\frac{1}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\left(3\right),\frac{1}{c+a+2b}\le\frac{1}{4}\left(\frac{1}{b+c}+\frac{1}{a+b}\right)\left(4\right)\)

Cộng (2),(3) và (4) có \(VT\le\frac{1}{4}.\left(6+6\right)=3\left(ĐPCM\right)\)

b/Áp dụng (1) có:

\(\frac{1}{3a+3b+2c}=\frac{1}{\left(a+b+2c\right)+2\left(a+b\right)}\le\frac{1}{4}\left(\frac{1}{a+b+2c}+\frac{1}{2\left(a+b\right)}\right)\left(5\right)\)

Tương tự có: \(\frac{1}{3a+2b+3c}\le\frac{1}{4}\left(\frac{1}{a+c+2b}+\frac{1}{2\left(a+c\right)}\right)\left(6\right)\)

\(\frac{1}{2a+3b+3c}\le\frac{1}{4}\left(\frac{1}{2a+b+c}+\frac{1}{2\left(b+c\right)}\right)\left(7\right)\)

Cộng (5),(6) và (7) có:

\(VT\le\frac{1}{4}\left(\frac{1}{a+b+2c}+\frac{1}{a+c+2b}+\frac{1}{2a+b+c}+\frac{1}{2}\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)\right)\le\frac{1}{4}.9=\frac{3}{2}\)

26 tháng 3 2020

Chéc khó nhỉ

10 tháng 1 2016

a) mình lười làm

b)=\(\frac{\left(2a+9\right)+\left(5a+17\right)-\left(3a\right)}{a+3}=\frac{\left(2a+5a-3a\right)+\left(9+17\right)}{a+3}=\frac{4a+26}{a+3}\)

Để Tổng ban đầu nguyên thì 4a+26 phải chia hết cho a+3

=>4(a+3)+14 chia hết cho a+3

Mà 4(a+3) chia hết cho a+3

=>14 chia hết cho a+3

=> a+3 thuộc Ư(14)={1;2;7;14;-1;-2;-7;-14}

=>a thuộc {-2;-1;4;11;-4;-5;-10;-17}