Cho tam giác ABC biết B+15°=A , C+30°=B . Tính các góc của tam giác ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Vì tam giác AEC và tam giác ADB có chung góc A và và góc AEC =góc ADB
=) góc C1=góc D1=) góc B=góc C
Xét tam giác ABC
ta có:A+B+C=180°
=) B+C=150°.Mà góc B=góc C =)B=C=150°÷2=75°
Vậy B=C=75°
Vì △ AEC và △ ADB có chung \(\widehat{A}\) và \(\widehat{AEC}=\widehat{ADB}\)
⇒ \(\widehat{C_1}=\widehat{D_1}\)
⇒ \(\widehat{B}=\widehat{C}\)
Xét △ ABC
Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
⇒ \(\widehat{B}+\widehat{C}=150^0\)
Mà \(\widehat{B}=\widehat{C}\) ⇒ \(=\dfrac{150^0}{2}=75^0\)
Vậy \(\widehat{B}=\widehat{C}\) \(=75^0\)
Ta có A + B + C = 360o (tổng 3 góc trong 1 tam giác)
Lại có \(\frac{A}{2}=\frac{B}{3}=\frac{C}{15}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{A}{2}=\frac{B}{3}=\frac{C}{15}=\frac{A+B+C}{2+3+15}=\frac{180^o}{20}=9^o\)
=> A = 9o . 2 = 18o
B = 9o. 3 = 27o
C = 9o . 15 = 135o
đinh Tuấn Việt nhầm rồi nha, tổng 3 góc trong tam giác thfi chỉ có 180 độ thôi,^-^!
A B C 30o 9 H 18 D
a, ^B = ^A - ^C = 900 - 300 = 600
\(\cos B=\frac{AB}{AC}\Rightarrow\frac{1}{2}=\frac{9}{AC}\Rightarrow AC=18\)cm
Áp dụng định lí Pytago tam giác ABC vuông tại A
\(BC^2=AB^2+AC^2=81+324=405\Rightarrow BC=9\sqrt{5}\)cm
b, \(\cos B=\frac{BH}{AB}\Rightarrow\frac{1}{2}=\frac{BH}{9}\Rightarrow BH=\frac{9}{2}\)cm
\(\sin B=\frac{AH}{AB}\Rightarrow\frac{\sqrt{3}}{2}=\frac{AH}{9}\Rightarrow AH=\frac{9\sqrt{3}}{2}\)cm
c, Vì AD là đường phân giác nên : \(\frac{AB}{AC}=\frac{BD}{DC}\Rightarrow\frac{DC}{AC}=\frac{BD}{AB}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{DC}{AC}=\frac{BD}{AB}=\frac{DC+BD}{AC+AB}=\frac{9\sqrt{5}}{27}=\frac{\sqrt{5}}{3}\)
\(\Rightarrow BD=\frac{\sqrt{5}}{3}AB=\frac{\sqrt{5}}{3}.9=3\sqrt{5}\)cm
\(\Rightarrow HD=BD-BH=3\sqrt{5}-\frac{9}{2}\)cm
Áp dụng định lí tam giác AHD vuông tại H ta có :
\(AD^2=AH^2+HD^2=\left(\frac{9\sqrt{3}}{2}\right)^2+\left(3\sqrt{5}-\frac{9}{2}\right)^2\)
tự giải nhé ><
a. Giải tam giác ABC
B=60^0
AC=AB/tan30=9.√ 3
BC=AB/sin30=9.2 =18
S=AC.AB/2=81√ 3/2
b. Kẻ AH là đường cao, tính AH, BH
AH=2S/BC=81√ 3/18=9√ 3/2
BH=√ (AB^2-AH^2)=9√ (1-3/4)=9/2
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\\ \Rightarrow2\widehat{B}+15^0+\widehat{C}=180^0\\ \Rightarrow2\widehat{C}+60^0+15^0+\widehat{C}=180^0\\ \Rightarrow3\widehat{C}=105^0\Rightarrow\widehat{C}=35^0\\ \Rightarrow\widehat{B}=65^0\\ \Rightarrow\widehat{A}=80^0\)
Ta có: \(\left\{{}\begin{matrix}\widehat{B}+15^0=\widehat{A}\\\widehat{C}+30^0=\widehat{B}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\widehat{A}=\widehat{B}+15^0\\\widehat{C}=\widehat{B}-30^0\end{matrix}\right.\)
Xét tam giác ABC có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)(tổng 3 góc trong tam giác )
\(\Rightarrow\widehat{B}+15^0+\widehat{B}+\widehat{B}-30^0=180^0\)
\(\Rightarrow3\widehat{B}=195^0\Rightarrow\widehat{B}=65^0\)
\(\Rightarrow\left\{{}\begin{matrix}\widehat{A}=\widehat{B}+15^0=65^0+15^0=80^0\\\widehat{C}=\widehat{B}-30^0=65^0-30^0=35^0\end{matrix}\right.\)