Cho tam giác ABC có góc C bằng 30o, BC=2AB. Tính góc A, B. Mọi người giúp em với, em cần gấp !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(AB=\sqrt{CA^2+CB^2}=25\left(cm\right)\)
Xét ΔABC vuông tại C có sin A=BC/BA=4/5
nên góc A\(\simeq\)53 độ
=>góc B=90-53=37 độ
ΔCAB vuông tại C có CH là đường cao
nên CH*AB=CA*CB
=>CH*25=15*20=300
=>CH=12(cm)
b: ΔHCA vuông tại H có HE là đường cao
nên CE*CA=CH^2
ΔCHB vuông tại H có FH là đường cao
nên CF*CB=CH^2
=>CE*CA=CF*CB
Kẻ \(AH\perp BC\). Đặt BH = x thì \(CH=60-x\)
Xét tam giác vuông ABH có: \(AH=tan50^o.x\)
Xét tam giác vuông ACH có: \(AH=tan37^o.\left(60-x\right)\)
Vậy nên ta có: \(tan50.x=tan37^o.\left(60-x\right)\)
\(\Leftrightarrow\left(tan50^o+tan37^o\right).x=tan37^o.60\)
\(\Leftrightarrow x=\frac{tan37^o.60}{tan50^o+tan37^o}\) (cm)
Vậy thì \(AB=\frac{x}{cos50^o}=\frac{tan37^o.60}{cos50^o\left(tan50^o+tan37^o\right)}\) (cm)
\(AH=x.tan50^o=\frac{tan50^o.tan37^o.60}{\left(tan50^o+tan37^o\right)}\) (cm)
\(AC=\frac{AH}{sin37^o}=\frac{tan50^o.60}{cos37^o\left(tan50^o+tan37^o\right)}\) (cm)
\(S_{ABC}=\frac{1}{2}.BC.AH=\frac{30tan50^o.tan37^o.60}{tan50^o+tan37^o}=\frac{1800tan50^o.tan37^o}{tan50^o+tan37^o}\left(cm^2\right)\)
BCK bằng 30 độ nha bạn.
Nếu kẻ đường cao CE thì ta có CEB = 900, EBC = 600 ( gt)
=> BCK = 300
Đúng thì like giúp mik nha bạn. Thx bạn
Câu hỏi của Troemmie - Toán lớp 7 - Học toán với OnlineMath
Bạn tham khảo nhé!
Kẻ BD là phân giác của góc ABC và Lấy M trên BC sao cho BM=BA
=>BM=1/2BC
Xét ΔBDC có góc DBC=góc DCB
nên ΔBDC cân tại D
mà DM là trung tuyến
nên DM là đường cao
Xét ΔBAD và ΔBMC có
BA=BM
góc ABD=góc MBD
BD chung
Do đó: ΔBAD=ΔBMD
=>góc BMD=góc BAD=90 độ
=>ΔABC vuông tại A
=>góc B+góc C=90 độ
=>góc B=60 độ, góc C=30 độ
1.
\(\widehat{ABC}=60^0\Rightarrow\Delta ABC\) đều
\(\Rightarrow S_{ABCD}=2S_{ABC}=2.\dfrac{a^2\sqrt{3}}{4}=\dfrac{a^2\sqrt{3}}{2}\)
Gọi O là giao điểm 2 đường chéo \(\Rightarrow SO\perp AC\Rightarrow SO\perp\left(ABCD\right)\)
\(SO=\dfrac{AC\sqrt{3}}{2}=\dfrac{a\sqrt{3}}{2}\) (trung tuyến tam giác đều)
\(V=\dfrac{1}{3}SO.S_{ABCD}=\dfrac{a^3}{4}\)
2.
Gọi M là trung điểm AB \(\Rightarrow SM\perp AB\Rightarrow SM\perp\left(ABCD\right)\)
\(SM=\dfrac{AB\sqrt{3}}{2}\) (trung tuyến tam giác đều)
Áp dụng định lý Pitago cho tam giác vuông MBC:
\(CM^2=BM^2+BC^2=\left(\dfrac{AB}{2}\right)^2+\left(2AB\right)^2=\dfrac{17AB^2}{4}\)
Áp dụng định lý Pitago cho tam giác vuông SMC:
\(SC^2=SM^2+CM^2\Leftrightarrow5a^2=\dfrac{3AB^2}{4}+\dfrac{17AB^2}{4}=5AB^2\)
\(\Rightarrow AB=a\Rightarrow\left\{{}\begin{matrix}AD=2a\\SM=\dfrac{a\sqrt{3}}{2}\end{matrix}\right.\)
\(V=\dfrac{1}{3}.SM.AB.AD=\dfrac{a^3\sqrt{3}}{3}\)
Gọi P là trung điểm của BE. Từ P kẻ 1 tia vuông góc với BE cắt đoạn AB tại Q.
Xét tam giác BEM: ^BME=900, P là trung điểm của BE => PM=PB (1)
Ta tính được ^QBP = ^ABC - ^EBC = 750-300 = 450
Mà PQ vuông góc PB => Tam giác BPQ vuông cân tại P=> BP=PQ (2)
Từ (1) và (2) => PM=PQ => Tam giác PQM cân tại P
Dễ thấy ^MPE=600 => ^QPM=^QPE+^MPE = 900+600=1500
=> ^PQM= (1800 - ^QPM)/2 = 150
=> ^BQM= ^PQM + ^BQP = 150+450 = 600
Xét tam giác ABC: ^ABC=750; ^ACB=450 => ^BAC=600
Từ đó ta có: ^BQM=^BAC. Mà 2 góc này so le trg => MQ // AC
Lại có M là trung điểm của BC => Q là trung điểm của AC
=> PQ là đường trung bình của tam giác ABE => PQ//AE
Do PQ vuông góc BE => AE vuông góc BE (Quan hệ //, vuông góc)
=> ^AEB=900 (đpcm).
ΔABC vuông tại A
=>\(\widehat{ABC}+\widehat{ACB}=90^0\)
=>\(\widehat{ACB}+40^0=90^0\)
=>\(\widehat{ACB}=90^0-40^0=50^0\)
ΔBAH vuông tại H
=>\(\widehat{BAH}+\widehat{B}=90^0\)
=>\(\widehat{BAH}=90^0-40^0=50^0\)
ΔCAH vuông tại H
=>\(\widehat{HAC}+\widehat{C}=90^0\)
=>\(\widehat{HAC}=90^0-\widehat{C}=90^0-50^0=40^0\)
Tam giác ABC có góc C = 30; BC = 2AB
=> tam giác ABC vuông tại A (đl)
=> góc A + góc B + góc C = 180
góc C = 30; góc A = 90 do tam giác ABC vuông tại A (cmt)
=> góc C = 60
kl_
định lí này trong sách ncpt 7 tập 1 có đó anh/chị