K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2017

30 tháng 7 2021

\(a,< =>\Delta=0\)

\(=>[-\left(k+1\right)]^2-4\left(2+k\right)=0\)

\(< =>k^2+2k+1-8-4k=0\)

\(< =>k^2-2k-7=0\)

\(\Delta1=\left(-2\right)^2-4\left(-7\right)=32>0\)

\(=>\left[{}\begin{matrix}k1=\dfrac{2+\sqrt{32}}{2}\\k2=\dfrac{2-\sqrt{32}}{2}\end{matrix}\right.\)

b,\(< =>\Delta'=0< =>\left(k-1\right)^2-\left(k+9\right)=0\)

\(< =>k^2-2k+1-k-9=0< =>k^2-3k-8=0\)

\(\Delta=\left(-3\right)^2-4\left(-8\right)=41>0\)

\(=>\left[{}\begin{matrix}k1=\dfrac{3+\sqrt{41}}{2}\\k2=\dfrac{3-\sqrt{41}}{2}\end{matrix}\right.\)

a) \(\text{Δ}=\left[-\left(k+1\right)\right]^2-4\cdot1\cdot\left(k+2\right)\)

\(=k^2+2k+1-4k-8\)

\(=k^2-2k-7\)

Để phương trình có nghiệm kép thì Δ=0

\(\Leftrightarrow k^2-2k-7=0\)(1)

\(\text{Δ}=\left(-2\right)^2-4\cdot1\cdot\left(-7\right)=4+28=32\)

Vì Δ>0 nên phương trình (1) có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}k_1=\dfrac{2-4\sqrt{2}}{2}=1-2\sqrt{2}\\k_2=\dfrac{2+4\sqrt{2}}{2}=1+2\sqrt{2}\end{matrix}\right.\)

15 tháng 12 2021

\(a,\Leftrightarrow-4+k=-3\Leftrightarrow k=1\\ b,\Leftrightarrow-3\left(2k-18\right)=40\\ \Leftrightarrow2k-18=-\dfrac{40}{3}\Leftrightarrow k=\dfrac{7}{3}\\ c,\Leftrightarrow10+18=9\left(2+k\right)\\ \Leftrightarrow k+2=\dfrac{28}{9}\Leftrightarrow k=\dfrac{10}{9}\)

15 tháng 12 2021

undefined

17 tháng 1 2021

phương trình có nghiệm x=1

\(\Leftrightarrow3\left(k+2.1\right)\left(1+2\right)-2\left(2.1+1\right)=18\)

\(\Leftrightarrow k=-\dfrac{1}{3}\)

18 tháng 1 2021

bạn làm hơi tắc