Tìm m nguyên để 3m^3 + 2m^2 + 3m + 2 là một số chính phương.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Giả sử f(x)=ax2+bx+c
f(0)=0 <=> 0.a+0.b+c=2010 => c=2010
f(1)-f(0)=1 <=> f(1) =2011 <=> a+b+c=2011=> a+b=1(1)
f(-1)-f(1)=1 <=> f(-1)=2012<=> a-b+c=2012 => a-b=2(2)
Từ (1), (2), (3) => a=3/2,b=-1/2,c=2010
=> f(x)=3/2.x2-1/2.x+2010
=>f(2)=3/2.4-1/2.2+2010=2015 (đpcm)
b) f(2m)-f(2)-f(0)=5m2-3m-1
3/2.4m2-1/2.2m+2010-2015-2010=5m2-3m-1
<=>6m2-m-2015=5m2-3m-1
<=>m2+2m-2014=0
<=> \(\orbr{\begin{cases}m=-1+\sqrt{2015}\\m=-1-\sqrt{2015}\end{cases}}\)
=> Không có số chính phương m thỏa mãn
Mình góp ý chút nhé số chính phương là bình phương của một số tự nhiên nhé =))
Để phương trình x 2 + y 2 − 2 ( m − 3 ) x − 2 ( 2 m + 1 ) y + 3 m + 10 = 0 là phương trình của một đường tròn thì
m − 3 2 + 2 m + 1 2 − 3 m − 10 > 0
⇔ m 2 − 6 m + 9 + 4 m 2 + 4 m + 1 − 3 m − 10 > 0
5 m 2 − 5 m > 0 ⇔ m ∈ − ∞ ; 0 ∪ 1 ; + ∞
Đáp án B
1.
\(3cos2x-7=2m\)
\(\Leftrightarrow cos2x=\dfrac{2m-7}{3}\)
Phương trình đã cho có nghiệm khi:
\(-1\le\dfrac{2m-7}{3}\le1\)
\(\Leftrightarrow2\le m\le5\)
2.
\(2cos^2x-\sqrt{3}cosx=0\)
\(\Leftrightarrow cosx\left(2cosx-\sqrt{3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cosx=\dfrac{\sqrt{3}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=\pm\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\) Có 4 nghiệm \(\dfrac{\pi}{2};\dfrac{3\pi}{2};\dfrac{\pi}{6};\dfrac{11\pi}{6}\) thuộc đoạn \(\left[0;2\pi\right]\)