Chứng minh rằng tích 2.3.4.51 chia hết cho 6 ; 12 ; 17 ; 102
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:vì 2 số TNLT có 1 số lẻ & 1 số chẵn => trong 2 số đó sẽ có 1 số chia hết cho 2
1. Trong 2 số tự nhiên liên tiếp có ít nhất 1 số chia hết cho 2
=> tích 2 số đó chia hết cho 2.
2. Trong 2 số tự nhiên liên tiếp có ít nhất 1 số chia hết cho 2;
trong 3 số tự nhiên liên tiếp có it nhất 1 số chia hết cho 3
Mà (2;3) = 1
=> Tích 3 số đó chia hết cho 2.3 = 6.
Đặt n = 2k , ta có ( đk k >= 1 do n là một số chẵn lớn hơn 4)
\(\left(2k\right)^4-4\times\left(2k\right)^3-4\times\left(2k\right)^2+16\times2k\)
\(=16k^4-32k^3-16k^2+32k\)
\(=16k^2\left(k^2-1\right)-32k\left(k^2-1\right)\)
\(=16k\times k\left(k-1\right)\left(k+1\right)-32\times k\left(k-1\right)\left(k+1\right)\)
Nhận xét \(\left(k-1\right)k\left(k+1\right)\) là 3 số tự nhiên liên tiếp nên
\(\left(k-1\right)k\left(k+1\right)\) chia hết cho 3
Suy ra điều cần chứng minh
câu 1:
a, giả sử 2 số chẵn liên tiếp là 2k và (2k+2) ta có:
2k(2k+2) = 4k2+4k = 4k(k+1) chia hết cho 8 vì 4k chia hết cho 4, k(k+1) chia hết cho 2
b, giả sử 3 số nguyên liên tiếp là a,a+1,a+2 với mọi a thuộc Z
- a,a+1,a+2 là 3 số nguyên liên tiếp nên tồn tại duy nhất một số chẵn hoặc có 2 số chẵn nên tích của chúng sẽ chia hết cho 2.
mặt khác vì là 3 số tự nhiên liên tiếp nên sẽ chia hết cho 3.
vậy tích của 3 số nguyên liên tiếp chia hết cho 6.
c, giả sử 5 số nguyên liên tiếp là a,a+1,a+2, a+3,a+4 với mọi a thuộc Z
- vì là 5 số nguyên liên tiếp nên sẽ tồn tại 2 số chẵn liên tiếp nên theo ý a tích của chúng choa hết cho 8.
- tích của 3 số nguyên liên tiếp chia hết cho 3.
- tích của 5 số nguyên liên tiếp chia hết cho 5.
vậy tích của 5 số nguyên liên tiếp chia hết cho 120.
câu 2:
a, a3 + 11a = a[(a2 - 1)+12] = (a - 1)a(a+1) + 12a
- (a - 1)a(a+1) chia hết cho 6 ( theo ý b câu 1)
- 12a chia hết cho 6.
vậy a3 + 11a chia hết cho 6.
b, ta có a3 - a = a(a2 - 1) = (a-1)a(a+1) chia hết cho 3 (1)
mn(m2-n2) = m3n - mn3 = m3n - mn + mn - mn3 = n( m3 - m) - m(n3 -n)
theo (1) mn(m2-n2) chia hết cho 3.
c, ta có: a(a+1)(2a+10 = a(a+1)(a -1+ a +2) = [a(a+1)(a - 1) + a(a+1)(a+2)] chia hết cho 6.( théo ý b bài 1)
bạn hãy áp dụng công thức này mà làm: k.(k+1)....(k+n) luôn chia hết cho 1,2,...,n+1 biết k và n là số nguyên
gọi 2 số chẵn liên tiếp đó là: 2k,2k+2
2k.(2k+2)=4k(k+1) mà k(k+1) chia hết cho 2 suy ra 2k.(2k+2) chia hết cho 8
gọi 3 số chẵn liên tiếp đó là: 2k,2k+2,2k+4
2k.(2k+2)(2k+4)=8k(k+1)(k+2) mà k(k+1) chia hết cho 2 suy ra 2k.(2k+2)(2k+4) chia hết cho 16 (1)
k(k+1)(k+2) chia hết cho 3 suy ra 8k(k+1)(k+2) chia hết cho 3 suy ra 2k.(2k+2)(2k+4) chia hết cho 3 (2)
từ (1),(2) suy ra 2k.(2k+2)(2k+4) chia hết cho 48 do (16,3)=1
câu c, tương tự vậy
rường hợp 1: n là số lẻ
Vì n là số lẽ => n+3 là số chẵn
=> (n+3)(n+6) chia hết cho 2
Trường hợp 2: n là số chẵn
Vì n là số chẵn => n+6 là số chẵn
=> (n+3)(n+6) chia hết cho 2
Từ 2 trường hợp trên => ĐPCM
Với n là số chẵn => n+3 lẻ và n+6 chẵn. Vì 1 số chẵn và 1 số lẻ nhân với nhau tạo thành số chẵn hay tích đó chia hết cho 2 ( đpcm)
Đề: CMR tích của 3 số tự nhiên liên tiếp luôn chia hết cho 6.
Ta có: trong 2 số tự nhiên liên tiếp luôn có 1 số chia hết cho 2 (1)
và trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3 (2).
Mà ƯCLN(2; 3)=1 (3)
Từ (1), (2) và (3) => tích của 3 số tự nhiên liên tiếp luôn chia hết cho 2.3 hay chia hết cho 6 (đpcm).
1 x 2 x 3 = 6 : 6 = 1
2 x 3 x 4 = 24 : 6 = 4
3 x 4 x 5 = 60 : 6 = 10
4 x 5 x 6 = 120 : 6 = 20
5 x 6 x 7 = 210 : 6 = 35
6 x 7 x 8 = 336 : 6 = 56
7 x 8 x 9 = 504 : 6 = 84
điều phải chứng minh
1 * 2 * 3 = 6 : 6 = 1
2 * 3 * 4 = 24 : 6 = 4
3 * 4 * 5 = 60 : 6 = 10
4 * 5 * 6 = 120 : 6 = 20
5 * 6 * 7 = 210 : 6 = 35
6 * 7 * 8 = 336 : 6 = 56
7 * 8 * 9 = 504 : 6 = 84
VẬY TÍCH 3 SỐ TỰ NHIÊN LIÊN TIẾP CHIA HẾT CHO 6
2.3.4.51=6.4.51
Mà 6 chia het cho 6,suy ra:2.3.4.51 chia hết cho 6
2.3.4.51=2.12.51
Mà 12 chia hết cho 12,suy ra:2.3.4.51 chia hết cho 12
2.3.4.51=2.3.4.17.3
Mà 17 chia hết cho 17,suy ra :2.3.4.51 chia hết cho 17
2.3.4.51=3.4.102
Mà 102 chia hết cho 102,suy ra 2.3.4.51 chia hết cho 102