1/Tìm x, y, biết:
x + y = x . y
2/Tìm x ϵ Z; biết:
( x + 2 ) ( 3 - x ) > 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3/ Ta có:
\(A=\dfrac{1-2x}{x+3}\)
\(A=\dfrac{-2x+1}{x+3}\)
\(A=\dfrac{-2x-6+7}{x+3}\)
\(A=\dfrac{-2\left(x+3\right)+7}{x+3}\)
\(A=-2+\dfrac{7}{x+3}\)
A nguyên khi \(\dfrac{7}{x+3}\) nguyên
⇒ 7 ⋮ \(x+3\)
\(\Rightarrow x+3\inƯ\left(7\right)\)
\(\Rightarrow x+3\in\left\{1;-1;7;-7\right\}\)
\(\Rightarrow x\in\left\{-2;-4;4;-10\right\}\)
Lời giải:
Ta thấy: $\sqrt{(x-2024)^2}\geq 0$ với mọi $x\in\mathbb{R}$
$|x+y-4z|\geq 0$ với mọi $x,y,z\in\mathbb{R}$
$\sqrt{5y^2}\geq 0$ với mọi $y\in\mathbb{R}$
Do đó để tổng của chúng bằng $0$ thì bản thân mỗi số đó phải nhận giá trị $0$
Hay:
$\sqrt{(x-2024)^2}=|x+y-4z|=\sqrt{5y^2}=0$
$\Leftrightarrow x=2024; y=0; z=\frac{x+y}{4}=506$
Bài 2:
a: =>x=0 hoặc x+3=0
=>x=0 hoặc x=-3
b: =>x-2=0 hoặc 5-x=0
=>x=2 hoặc x=5
c: =>x-1=0
hay x=1
y=\(\frac{x^4-2x^3+1}{x^2+1}\)=\(x^2\)-2x-1 + \(\frac{2x+2}{x^2+1}\)=\(x^2\)-2x-1 + \(\frac{2\left(x+1\right)}{x^2+1}\)
vì x và y đều nguyên nên \(x^2\)+1 phải là ước của x+1
vì x+1 <= \(x^2\)+1
nên ta có \(x^2\)+1 = x+1
=> x=0 hoặc x=1
với x=0 thì y=1
với x=1 thì y =0
vậy ta có (x;y)=(0;1); (1;0)
a) (x - 2)(y + 1) = 7
=> x - 2, y + 1 ∈ Ư(7)
Vì x, y ∈ Z => x - 2, y + 1 ∈ Z
=> x - 2, y + 1 ∈ {1; -1; 7; -7}
Lập bảng giá trị:
x - 2 | 1 | 7 | -1 | -7 |
y + 1 | 7 | 1 | -7 | -1 |
x | 3 | 9 | 1 | -5 |
y | 6 | 0 | -8 | -2 |
Đối chiếu điều kiện x, y ∈ Z
=> Các cặp (x, y) cần tìm là:
(3; 6); (9; 0); (1; -8); (-5; -2)
1; 134. (-76) + 348.(-24) - 214.76
= (-76.) (134 + 214) + 348.(-24)
= -76. 348 + 348. (-24)
= - 348 .(76 + 24)
= - 348. 100
= - 34800
2; \(x\); y \(\in\) Z biết \(x\).(y + 1) - ( y + 1) = 10
(y + 1).(\(x\) - 1) = 10
10 = 2.5; Ư(10) = {- 10; - 5; -2; -1; 1; 2; 5; 10}
Lập bảng ta có:
\(x\) - 1 | - 10 | - 5 | - 2 | -1 | 1 | 2 | 5 | 10 |
\(x\) | -9 | -4 | -1 | 0 | 2 | 3 | 6 | 11 |
y + 1 | -1 | -2 | -5 | -10 | 10 | 5 | 2 | 1 |
y | - 2 | -3 | -6 | - 11 | 9 | 4 | 1 | 0 |
Theo bảng trên ta có các cặp \(x\); y nguyên thỏa mãn đề bài là:
(\(x\); y) = (-9; -2); (-4; - 3); (-1; -6); (0; -11); (2; 9); (3; 4); (6; 1); (11; 0)
Lời giải:
$\frac{5}{x}-\frac{y}{3}=\frac{1}{6}$
$\Rightarrow \frac{15-xy}{3x}=\frac{1}{6}$
$\Rightarrow \frac{2(15-xy)}{6x}=\frac{x}{6x}$
$\Rightarrow 2(15-xy)=x$
$\Rightarrow 30=2xy+x$
$\Rightarrow 30=x(2y+1)$
$\Rightarrow x=\frac{30}{2y+1}$
Vì $x$ nguyên nên $\frac{30}{2y+1}$ nguyên
$\Rightarrow 2y+1$ là ước của $30$
Vì $2y+1$ lẻ nên $2y+1\in\left\{\pm 1; \pm 3; \pm 5; \pm 15\right\}$
$\Rightarrow y\in\left\{-1; 0; -2; 1; -3; 2; -8; 7\right\}$
Tương ứng với các giá trị $y$ trên ta có: $x\in\left\{-30; 30; -10; 10; -6; 6; -2;2\right\}$
Bài 2:
a: =>x=0 hoặc x=-3
b: =>x-2=0 hoặc 5-x=0
=>x=2 hoặc x=5
c: =>x-1=0
hay x=1
Ta thấy (x+1)(2y-5)=143=11.13=13.11=143.1=1.143
Suy ra ta có 4 trường hợp sau:
-Nếu x+1=11suy ra x=10 ; 2y-5=13 suy ra y=9
-Nếu x+1=13 suy ra x=12 ; 2y-5=11 suy ra y=8
-Nếu x+1=143 suy ra x=142 ; 2y-5=1 suy ra y=3
-Nếu x+1=1 suy ra x=0 ; 2y-5=143 suy ra y=74
Vậy x=10 thì y=9
x=12 thì y=8
x=142 thì y=3
x=0 thì y=74
1)
Ta có: x+y=x.y
=>x+y-xy=0
=>x+y-xy-1=-1
=>(x-xy)+(y-1)=-1
=>x.(1-y)-(1-y)=-1
=>(1-y).(x-1)=-1
=>1-y và x-1 thuộc ước của -1={-1;1}
Khi 1-y=-1 và x-1=1
=> y=2 ; x =2
Khi 1-y=1 và x-1=-1
=> y=0 ; x =0