\(2^x+2^{x+3}=144\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2^{x+3}.2^x=144\)
\(2^{x+3+x}=2^4.3^2\)
\(2^{2x+3}=2^4.3^2\)
\(2^{2x+3-4}=3^2\)
`2^(x+3)+2^x=144`
`2^x *2^3 +2^x =144`
`2^x (8+1)=144`
`2^x *9=144`
`2^x =16`
`2^x =16`
`2^x =2^4`
`=>x=4`
2\(^{x+3}\) + 2\(^x\) = 144
2\(^x\).( 23 + 1) = 144
2\(x\)(8 + 1) = 144
2\(^x\) . 9 = 144
2\(^x\) = 144 : 9
2\(^x\) = 16
2\(^x\) = 24
\(x\) = 4
\(2^x+2^{x+3}=144\\ 2^x\left(1+2^3\right)=144\\ 2^x.9=144\\ 2^x=16\\ 2^x=2^4\\ \Rightarrow x=4\)
\(2^x+2^x+3=144\)
\(2\left(2^x\right)=144-3\)
\(2\left(2^x\right)=141\)
\(2^x=\frac{141}{2}\)
vô lí nhỉ????
\(2^x+2^{x+3}=144\)
\(\Rightarrow2^x\left(1+2^3\right)=144\)
\(\Rightarrow2^x.9=144\Rightarrow2^x=16\Rightarrow x=4\)
2x + 3 + 2x = 144
<=> 2x (2^3 + 1) = 144
<=> 2x . 9 = 144
<=> 2x = 16
<=> x = 4
2^x + 2^x-3 = 144
\(2^xx1+2^xx2^3\)\(=144\)
\(2^x.\left(1+2^3\right)=144\)
\(2^x.9=144\)
\(2^x=144:9\)
\(2^x=16\)
\(2^x=2^4\)
\(=>x=4\)
\(2^x+2^{x+3}=144\)
\(\Rightarrow2^x+2^x.2^3=144\)
\(\Rightarrow2^x.\left(1+2^3\right)=144\)
\(\Rightarrow2^x.9=144\)
\(\Rightarrow2^x=144:9\)
\(\Rightarrow2^x=16\)
\(\Rightarrow2^x=2^4\)
\(\Rightarrow x=4\)
Vậy x = 4
_Chúc bạn học tốt_
\(2^x+2^{x+3}=144\)
\(\Leftrightarrow2^x+2^x\cdot2^3=144\)
\(\Leftrightarrow2^x+2^x\cdot8=144\)
\(\Leftrightarrow2^x\left(1+8\right)=144\)
\(\Leftrightarrow2^x\cdot9=144\)
\(\Leftrightarrow2^x=144:9\)
\(\Leftrightarrow2^x=16\)
\(\Leftrightarrow2^x=2^4\)
\(\Leftrightarrow x=4\)
Vậy x=4
nếu đề là: 2x + 2x + 3 = 144 ; thì giải như sau:
2x + 2x + 3 = 144
=> 2x . 1 + 2x . 23 = 144 (dấu . là dâu nhân nhé)
=> 2x . (1 + 23) = 144
=> 2x . 9 = 144
=> 2x = 144 : 9 = 16
=> x = 4
2^x + 2^(x + 3) = 144
<=>2^x+2^x.2^3=144
<=>2^x+8.2^x=144
<=>2^x.9=144
<=>2^x=16
<=>2^x=2^4
<=>x=4
ta có :
\(2^x+2^{x+3}=144\Leftrightarrow2^x+8.2^x=144\)
\(\Leftrightarrow9.2^x=144\Leftrightarrow2^x=16=2^4\Leftrightarrow x=4\)