K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
5 tháng 3 2021

Lời giải:

Nếu $m=-3$ thì PT trở thành: $7x^2-3=0$ có nghiệm $x=\pm \sqrt{\frac{3}{7}}$

-------------------------------------------------------------

Nếu $m\neq -3$Đặt $x^2=t$ thì pt trở thành:

$(m+3)t^2-(2m-1)t-3=0(*)$

1. Để pt ban đầu có 1 nghiệm thì PT $(*)$ có nghiệm $t=0$ và nếu có nghiệm còn lại thì nghiệm đó âm.

Để PT $(*)$ có nghiệm $t=0$ thì: $(m+3).0-(2m-1).0-3=0\Leftrightarrow -3=0$ (vô lý)

Do đó không tồn tại $m$ để pt có 1 nghiệm.

2. Để pt ban đầu có 2 nghiệm phân biệt thì PT $(*)$ có 1 nghiệm dương kép hoặc có 1 nghiệm dương và 1 nghiệm âm.

PT có 1 nghiệm dương, 1 nghiệm âm khi \(\left\{\begin{matrix} \Delta (*)=(2m-1)^2+12(m+3)> 0\\ P=\frac{-3}{m+3}<0\end{matrix}\right.\)

\(\Leftrightarrow m>-3\)

PT có nghiệm kép dương $\Leftrightarrow \Delta (*)=(2m-1)^2+12(m+3)=0\Leftrightarrow 4m^2+8m+37=0$ (vô lý)

Vậy $m>-3$

3.

PT ban đầu có 4 nghiệm phân biệt khi PT $(*)$ có 2 nghiệm dương phân biệt

Điều này xảy ra khi \(\left\{\begin{matrix} \Delta (*)=(2m-1)^2+12(m+3)>0\\ S=\frac{2m-1}{m+3}>0\\ P=\frac{-3}{m+3}>0\end{matrix}\right.\Leftrightarrow m< -3\)

7 tháng 3 2021

em cảm ơn ạ!

19 tháng 12 2020

Đặt \(x^2=t\left(t\ge0\right)\), phương trình trở thành:

\(t^2-2\left(m+1\right)t+2m+1=0\left(1\right)\)

Yêu cầu bài toán thỏa mãn khi phương trình \(\left(1\right)\) có hai nghiệm dương phân biệt

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=m^2>0\\t_1+t_2=2m+2>0\\t_1t_2=2m+1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>-\dfrac{1}{2}\\m\ne0\end{matrix}\right.\)

24 tháng 5 2021

a)Thay m=-7 vào pt ta được: \(x^4+5x^2-14=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=2\\x^2=-7\left(L\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\)

Vậy...

b) Đặt \(t=x^2\left(t\ge0\right)\)

=>Với mỗi t dương ta tìm được hai nghiệm x phân biệt

Pttt: \(t^2-\left(m+2\right)t+3m+7=0\) (*)

Để pt ban đầu có hai nghiệm pb <=> pt (*) có 1 nghiệm dương duy nhất hoặc có hai nghiệm phân biệt trái dấu

TH1:PT (*) có 1 nghiệm dương duy nhất

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=0\\-\dfrac{b}{2a}>0\end{matrix}\right.\)  \(\Leftrightarrow\left\{{}\begin{matrix}m^2-8m-24=0\\\dfrac{m+2}{2}>0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m=4+2\sqrt{10}\\m=4-2\sqrt{10}\end{matrix}\right.\\m>-2\end{matrix}\right.\)\(\Rightarrow m=4+2\sqrt{10}\) (1)

TH2: Pt (*) có hai nghiệm phân biệt trái dấu

\(\Leftrightarrow ac< 0\) \(\Leftrightarrow3m+7< 0\) \(\Leftrightarrow m< -\dfrac{7}{3}\) (2)

Từ (1) (2) =>\(\left[{}\begin{matrix}m=4+2\sqrt{10}\\m< -\dfrac{7}{3}\end{matrix}\right.\)

 

24 tháng 5 2021

trông kết quả em tự làm ra không được tròn nên em gửi câu hỏi lên đây. Hóa ra mình làm đúng (??????)

15 tháng 2 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Phương trình (1) có hai nghiệm phân biệt khi phương trình (2) có nghiệm kép hoặc có 1 nghiệm dương và một nghiệm âm.

Phương trình (2) có một nghiệm số kép khi và chỉ khi Δ = 169 - 4m = 0

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Phương trình (2) có một nghiệm số dương và một nghiệm số âm khi

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vậy với m = 169/4 hoặc m < 0 thì phương trình (1) có 2 nghiệm phân biệt.

16 tháng 4 2017

Chọn B.

Đặt t = x2, t 0.

Phương trình trở thành: t2 – 2(m + 1)t + 2m + 1 = 0  (2)

Phương trình (1) có bốn nghiệm phân biệt khi và chỉ khi PT (2) có hai nghiệm dương phân biệt t2 > t1 > 0.

Khi đó PT(2) có bốn nghiệm là: 

Bốn nghiệm này lập thành cấp số cộng khi :

Theo định lý viet thì : 

Vậy m = 4 hoặc  là những giá trị cần tìm.

17 tháng 9 2018

b) Đặt x 2  = t (t ≥ 0). Khi đó ta có phương trình: t 2  – mt – m – 1 = 0 (*)

Δ =  m 2  - 4(-m - 1) = m 2  + 4m + 4 = m + 2 2

Phương trình đã cho có 4 nghiệm phân biệt khi và chỉ khi phương trình (*) có 2 nghiệm dương phân biệt

Đề kiểm tra Toán 9 | Đề thi Toán 9

28 tháng 1 2019

14 tháng 11 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Phương trình (1) có ba nghiệm phân biệt khi phương trình (2) có 1 nghiệm số dương và 1 nghiệm bằng 0 khi:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

20 tháng 3 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Phương trình (1) có 4 nghiệm phân biệt khi phương trình (2) có hai nghiệm số dương khi

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

9 tháng 7 2019

Đáp án D

Đặt t = x 2 ⇒ t ≥ 0.  Phương trình đã cho trở thành  t 2 − 2 t − m = 0    *

Để phương trình đã cho có 4 nghiệm phân biệt thì phương trình (*) có 2 nghiệm dương phân biệt

⇔ Δ ' = 1 + m > 0 S = 2 > 0 P = − m > 0 ⇔ − 1 < m < 0