Cho hình bình hành ABCD. Pham giác của góc A và C cắt đường chéo BD tại E và F. CM hai đa giác ABCFE và ADCFE có diện tích bằng nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
△ ABE = △ CDF (g.c.g) ⇒ S A B E = S C D F (l)
△ AED = △ CFB (g.c.g) ⇒ S A E D = S C F B (2)
Từ (1) và (2) ⇒ S A B E + S C F B = S C D F + S A E D
Hay S A B C F E = S A D C F E
Hình ABCFE không phải là đa giác lồi vì nó nằm trên hai nửa mặt phẳng có bờ là đường thẳng chứa cạnh EF.
Hình ADCFE không phải là đa giác lồi vì nó nằm trên hai nửa mặt phẳng có bờ là đường thẳng chứa cạnh EF.
Ta có:
△ ABC = △ CDA (c.c.c) ⇒ S A B C = S C D A (1)
△ EFC = △ CHE (c.c.c) ⇒ S E F C = S C H E (2)
Từ (1) và (2) ⇒ S A B C - S E F C = S C D A - S C H E
Hay S A B C F E = S A E H D
Ta có S A B C F E = S A B E + S B F C S A D C F E = S D F C + S D A E
Xét hình bình hàng ABCD có AE và CF lần lượt là phân giác của các góc A và C
nên suy ra: B A E ^ = D A E ^ = B C F ^ = D C F ^
Xét ΔABE và ΔDCF có:
AB = CD (gt), A B E ^ = C D F ^ (slt), B A E ^ = D C F ^ (cmt)
=> ΔABE = ΔDCF (g.c.g)
=> SABE = SCDF (1)
Xét ΔBCF và ΔDAE có:
AD = BC (gt), A D E ^ = C B F ^ (slt), D A E ^ = B C F ^ (cmt)
=> ΔBCF = ΔDAE (g.c.g)
=> SBCF = SDAE (2)
Từ (1) và (2) suy ra:
SABE + SBCF = SCDF + SDAE
=> SABCFE = SADCFE
Đáp án cần chọn là: C
Bài 3:
a: Ta có: AD+DB=AB
AE+EC=AC
mà DB=EC và AB=AC
nên AD=AE
Xét ΔABC có \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
nên DE//BC
Xét tứ giác BDEC có DE//BC
nên BDEC là hình thang
Hình thang BDEC có \(\widehat{DBC}=\widehat{ECB}\)
nên BDEC là hình thang cân
b: Để BD=DE=EC thì BD=DE và DE=EC
BD=DE thì ΔDBE cân tại D
=>\(\widehat{DBE}=\widehat{DEB}\)
mà \(\widehat{DEB}=\widehat{EBC}\)(hai góc so le trong, DE//BC)
nên \(\widehat{DBE}=\widehat{EBC}\)
=>\(\widehat{ABE}=\widehat{EBC}\)
=>BE là phân giác của góc ABC
=>E là chân đường phân giác kẻ từ B xuống AC
Xét ΔEDC có ED=EC
nên ΔEDC cân tại E
=>\(\widehat{EDC}=\widehat{ECD}\)
mà \(\widehat{EDC}=\widehat{DCB}\)(hai góc so le trong, DE//BC)
nên \(\widehat{ECD}=\widehat{DCB}\)
=>\(\widehat{ACD}=\widehat{BCD}\)
=>CD là phân giác của góc ACB
=>D là chân đường phân giác từ C kẻ xuống AB
Bài 2:
a: Ta có: ABCD là hình bình hành
=>AB//CD và AB=CD(1)
Ta có: M là trung điểm của AB
=>\(AM=MB=\dfrac{AB}{2}\left(2\right)\)
Ta có: N là trung điểm của CD
=>\(NC=ND=\dfrac{CD}{2}\left(3\right)\)
Từ (1),(2),(3) suy ra AM=MB=NC=ND
Xét tứ giác AMCN có
AM//CN
AM=CN
Do đó: AMCN là hình bình hành
b: Ta có AMCN là hình bình hành
=>AN//CM
Xét ΔDFC có
N là trung điểm của DC
NE//FC
Do đó: E là trung điểm của DF
=>DE=EF(4)
Xét ΔABE có
M là trung điểm của BA
MF//AE
Do đó: F là trung điểm của BE
=>BF=FE(5)
Từ (4) và (5) suy ra BF=FE=ED
Trên EM lấy trung điểm I.Kẻ IH vuông vs DC.
IH là đg trug bình của hình thang EDCM
=> DH=HC
mà DF=KC
Trừ theo vế đc :FH=HK
Tam giác IFH có: IH là đg cao,là trung tuyến
\Rightarrowtam giác IFH cân $\Rightarrow IF = IK = \frac{{EM}}{2}$
=> Tam giac EFM vuông hay $\widehat {EFM} = {90^0}$