K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2019

Cho tam giác abc vuông cân ở a ,m là trung điểm của bc, điểm e nằm giữa m và c.Ke bh,ck vuông với ae (h,k€ae) chứng minh bh=ak.C/m tam giác mbh= tam giác mak.C/m tam giác mhklaf tam giác vuông cân .Vex hình luôn cho mình mình cần gấpkhoang 6 tiênd nữa

28 tháng 3 2017

Kết bạn với tớ nhé

5 tháng 2 2022

Giúp mk với các bạn ơi

 

Bài 1 :Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.a/. Ch/m : ΔAMB = ΔNMCb/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.Ch/m : BI = CN.BÀI 2 :Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE...
Đọc tiếp

Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC

b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.

c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.

Ch/m : BI = CN.

BÀI 2 :

Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC

a) Chứng minh BE = DC

b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.

c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.

Bài 3

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

BÀI 4

Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.

a) Chứng minh ΔAHB = ΔDBH.

b) Chứng minh AB//HD.

c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.

d) Tính góc ACB , biết góc BDH= 350 .

Bài 5 :

Cho tam giác ABC cân tại A và có \widehat{A}=50^0  .

Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :

Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.

Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7

Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.

Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :

Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :

Tam giác ACE đều.
A, E, F thẳng hàng.

1

Bài 3: 

a: Xét ΔAIB và ΔCID có

IA=IC

góc AIB=góc CID

IB=ID

Do đó: ΔAIB=ΔCID

b: Xét tứ giác ABCD có

I là trung điểm chung của AC và BD

nên ABCD là hình bình hành

Suy ra: AD//BC va AD=BC

Bài 6: 

a: Xét ΔADB và ΔAEC có

AD=AE
góc A chung

AB=AC

Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có

EB=DC

BC chung

EC=BD

Do đó: ΔEBC=ΔDCB

Suy ra: góc OBC=góc OCB

=>ΔOBC cân tại O

=>OB=OC

=>OE=OD

=>ΔOED cân tại O

c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC

a: Xét ΔIAB và ΔIDC có

IA=ID

AB=DC

IB=IC

=>ΔIAB=ΔIDC

=>góc IAB=góc IDC=góc IAD

=>AI là phân giác của góc BAC
b: Xét ΔAEI vuông tại E và ΔAHI vuông tại H có

AI chung

góc EAI=góc HAI

=>ΔAEI=ΔAHI

=>AE=AH; IE=IH

=>AI là trung trực của EH

14 tháng 4 2019

chịu em lớp 6

30 tháng 3 2016

a) gọi giao điểm của đường trung trực (ứng với BC) và cạnh BC là M, gọi giao điểm của đường trung trực (ứng với AD) và cạnh AD là N

Xét 2 tam giác vuông MIB và MIC có:

MB=MC (giả thiết)

MI là cạnh chung

=> Tam giác MIB=MIC ( 2 cạnh góc vuông)

=> BI=IC (2 cạnh tương ứng)

Xét 2 tam giác vuông NIA và NID có:

NA=ND (giả thiết)

NI là cạnh chung

=> Tam giác NIA=NID (2 cạnh góc vuông)

=> IA=ID ( 2 cạnh tương ứng)

Xét 2 tam giác AIB và DIC có:

IA=ID (cmt)

IB=IC (cmt)

AB=CD ( gt)

=> Tam giác AIB = DIC (cạnh-cạnh-cạnh)

b) Ta có : góc ABI = DCI ( vì tam giác AIB=DIC)

=> 180o - ABI = 180o - DCI

=> EBA - ABI = NCD - DCI

=> góc EBI = NCI

Xét hai tam giác vuông EIB và NIC có:

IB=IC(cmt)

góc EIB=NCI ( cmt)

=> Tam giác EIB=NIC( cạnh huyền - góc nhọn)

=> IE=IN ( 2 cạnh tương ứng)

Mà I nằm trong góc EBC

=> I nằm trên tia phân giác của góc EBC

Vậy AI là tia phân giác của góc BAC

c) Ta có: EB=NC ( vì tam giác EIB=NIC)

mà AB=CD ( giả thiết)

=> AB+EB= NC+CD

=> AE=ND

mà AN = ND = 1/2AD

=> AE= AN = 1/2 AD

15 tháng 3 2018

bạn vẽ hình đi

3 tháng 11 2019

A B C I P Q D E = = x x

a, Vì P là trung điểm của AD => AP = DP 

Mà IP ⊥ AD

=> IP là đường trung trực của AD

=> AI = ID 

Vì Q là trung điểm của BC => BQ = QC

Mà IQ ⊥ BC

=> IQ là đường trung trực của BC

=> IB = IC

Xét △AIB và △DIC

Có: AB = CD (gt)

       AI = DI (cmt)

       IB = IC (cmt)

=> △AIB = △DIC (c.c.c)

b, Vì △AIB = △DIC (câu a)

=> BAI = IDC (2 góc tương ứng)

Xét △PID vuông tại P và △PIA vuông tại P

Có: IP là cạnh chung (gt)

      AP = DP (gt)

=> △PID = △PIA (cgv)

=> IAP = PDI (2 góc tương ứng)

Mà BAI = IDC (cmt)

=> IAP = BAI 

Và AI nằm giữa BAC

=> AI là tia phân giác của BAC

c, Xét △AIE vuông tại E và △AIP vuông tại P

Có: AI là cạnh chung

      EAI = IAP (cmt)

=> △AIE =△AIP (gh-gn)

=> AE = AP 

Mà AP = 1/2 . AD

=> AE = 1/2 . AD (đpcm)