cho tam giác ABC có AB>AC , D là Trung điểm của BC .
CMR ADB > ADC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Có D là trung điểm BC => BD = DC
Xét 2 tam giác ADB và ADC có
AD chung
BD = CD ( chứng minh trên )
AB = AC ( giả thiết)
=> tam giác ADB = tam giác ADC
b, Có tam giác ADB = tam giác ADC => góc ADB = góc ADC
Mà góc ADB + góc ADC = 180 độ
=> góc ADB = góc ADC =90 độ => AD vuông góc BC
tam giác có 2 cạnh bằng nhau là tam giác cân. Lấy BC làm đáy nối D lên A. Chắc chắn tam giác đó được : làm 2. AD= DC Cạnh 2 tam rác = nhau. Hết
a) Xét tam giác ADB và ADC có:
AB=AC(giả thiết)
AD là cạnh chung
BC=DC (giả thiết)
=> tam giác ADB=ADC (c-c-c).
b) Vì hai tam giác ADB và ADC bằng nhau nên => góc ADB = góc ADC
Vì góc ADB và góc ADC là hai góc kề bù nên góc ADB = góc ADC = 90 độ
=> AD vuông góc với BC.
a) Xét △ADB và △ADC có:
AD : Cạnh chung
AB=AC ( GT)
BD=CD (GT)
Do đó △ADB = △ADC (c-c-c)
b) + c) △ABC cân tại A ( vì AB=AC) có : AD là đường trung trung tuyến
=> AD là đường phân giác của △ABC
Và AD là đường cao của △ABC hay AD ⊥ BC
Chúc bạn học giỏi !
Khỏi vẽ hình nhé!!
a/ Xét tam giác ABD và tam giác ACD có:
AB = AC (GT)
AD: cạnh chung
BD = CD (vì D là trung điểm BC)
=> tam giác ABD = tam giác ACD (c.c.c)
b/ Ta có: tam giác ABD = tam giác ACD (câu a)
=> góc ADB = góc ADC (2 góc tương ứng)
Mà góc ADB + góc ADC = 1800 (kề bù)
=> góc ADB = góc ADC = 1800 : 2 = 900
Vậy AD vuông góc với BC (đpcm)
a: Xét ΔADB và ΔADC có
AB=AC
AD chung
BD=CD
Do đó: ΔADB=ΔADC
b: Ta có: ΔABD=ΔACD
=>\(\widehat{BAD}=\widehat{CAD}\)
=>AD là phân giác của góc BAC
c: Xét ΔADM vuông tại M và ΔADN vuông tại N có
AD chung
\(\widehat{DAM}=\widehat{DAN}\)
Do đó: ΔADM=ΔADN
=>AM=AN
Xét ΔABC có \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
nên MN//BC