Câu 2: a) Phân tích thành nhân tử: \(x^2+2xy+7x+7y+y^2+10\)
b) Biết xy=11 và \(x^2y+xy^2+x+y=2010.\).Hãy tính: \(x^2+y^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(x^2+2xy+7x+7y+y^2+10=\left(x^2+2xy+y^2\right)+7\left(x+y\right)+10\)
\(=\left(x+y\right)^2+2\left(x+y\right)+5\left(x+y\right)+10\)
\(=\left(x+y\right)\left(x+y+2\right)+5\left(x+y+2\right)\)
\(=\left(x+y+2\right)\left(x+y+5\right)\)
b,\(x^2y+xy^2+x+y=2010\Rightarrow xy\left(x+y\right)+x+y=2010\)
\(\Rightarrow12\left(x+y\right)=2010\Rightarrow x+y=167,5\)
Ta có:\(x^2+y^2=x^2+2xy+y^2-2xy=\left(x+y\right)^2-2xy=\left(167,5\right)^2-2.11=28034,25\)
a ) x ^ 2 + 2xy + 7x + 7y + y ^2 + 10 = ( x + y ) ^2 + 7 ( x + y ) + 10 = ( x + y ) ( x + y + 17 )
\(x^2+2xy+7x+7y+y^2+10\)
\(=\left(x^2+2xy+y^2\right)+\left(7x+7y\right)+\frac{49}{4}-\frac{9}{4}\)
\(=\left(x+y\right)^2+7\left(x+y\right)+\frac{49}{4}-\frac{9}{4}\)
\(=\left(x+y+\frac{7}{2}\right)^2-\frac{9}{4}\)
\(=\left(x+y+\frac{7}{2}-\frac{3}{2}\right)\left(x+y+\frac{7}{2}+\frac{3}{2}\right)\)
\(=\left(x+y+2\right)\left(x+y+5\right)\)
b)Ta có: x2y+xy2+x+y=2010
<=>xy.x+xy.y+x+y=2010
<=>11x+11y+x+y=2010
<=>12(x+y)=2010
<=>x+y=167,5
=>(x+y)2=28056,25
<=>x2+y2+2xy=28056,25
<=>x2+y2=28034,25
Thời gian có hạn copy cái này hộ mình vào google xem nha: :
Link : https://lazi.vn/quiz/d/16491/nhac-edm-la-loai-nhac-the-loai-gi
Vào xem xong các bạn nhận được 1 thẻ cào mệnh giá 100k nhận thưởng bằng cách nhắn tin vs mình và 1 phần thưởng bí mật là chiếc áo đá bóng,....
Có 500 giải nhanh nha đã có 200 người nhận rồi. Mình là phụ trách
OK N
a) \(=2\left(x-y\right)-\left(x^2-2xy+y^2\right)\)
\(=2\left(x-y\right)-\left(x-y\right)^2\)
\(=\left(x-y\right)\left(2-x+y\right)\)
b) \(x^3-x+3x^2y+3xy^2+y^3-y\)
\(=\left(x^3+y^3\right)+\left(3x^2+3xy^2\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2+3xy-1\right)\)
\(=\left(x+y\right)\left(x^2+y^2+2xy-1\right)\)
\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Bài 3:
a: \(x^2-16=\left(x-4\right)\cdot\left(x+4\right)\)
b: \(x^2+2x+1-y^2=\left(x+1+y\right)\left(x+1-y\right)\)
c: \(=\left(x-y\right)^2-4=\left(x-y-2\right)\left(x-y+2\right)\)
Trả lời :
Ta có :
\(x^2+2xy+7x+7y+y^2+10\)
\(=\left(x^2+2xy+y^2\right)+\left(7x+7y\right)+10\)
\(=\left(x+y\right)^2+7\left(x+y\right)+10\)
\(=\left(x+y\right)\left(x+y+2\right)+5\left(x+y+2\right)\)
\(=\left(x+y+2\right)\left(x+y+5\right)\)
Hok tốt
a) \(x^2+2xy+7x+7y+y^2+10\)
\(=\left(x^2+2xy+y^2\right)+\left(7x+7y\right)+10\)
\(=\left(x+y\right)^2+7\left(x+y\right)+10\)
\(=\left(x+y\right)^2+2\left(x+y\right)+5\left(x+y\right)+10\)
\(=\left(x+y+2\right)\left(x+y+5\right).\)
b) \(x^2y+xy^2+x+y=2010\)
\(\Leftrightarrow xy\left(x+y\right)+\left(x+y\right)=2010\)
\(\Leftrightarrow11\left(x+y\right)+1\left(x+y\right)=2010\)
\(\Leftrightarrow12\left(x+y\right)=2010\)
\(\Leftrightarrow x+y=\frac{335}{2}\)
\(\Leftrightarrow\left(x+y\right)^2=\frac{112225}{4}\)
\(\Leftrightarrow x^2+2xy+y^2=\frac{112225}{4}\)
\(\Leftrightarrow x^2+y^2+22=\frac{112225}{4}\)
\(\Leftrightarrow x^2+y^2=\frac{112137}{4}.\)
Vậy \(x^2+y^2=\frac{112137}{4}.\)