Cho tam giác abc gọi M là trung điểm của cạnh BC. Qua điểm A kẻ đường thẳng d song song với BC. Trên đường thẳng d lấy điểm D sao cho AD=BM. Gọi I là trung điểm của AM. Chứng minh
Tam giác ABD=BAM
AM//BD
Ba điểm D,I,C thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đọc mà rối loạn tâm chí, chi co cao thủ như các thầy cô giáo mới làm đc
1/ Xét tg ABC và tg DBE có
BA=BD (gt)
DE//AC (gt) \(\Rightarrow\widehat{BAC}=\widehat{BDE}\) (góc so le trong)
\(\widehat{ABC}=\widehat{DBE}\) (góc đối đỉnh)
=> tg ABC = tg DBE (g.c.g)
2/
Ta có tg ABC = tg DBE (cmt) => BC=BE
Xét tư giác ACDE có
BA=BD (gt); BC=BE (cmt) => ACDE là hình bình hành (Tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường là hbh)
=> AE//CD (cạnh đối hbh)
3/
Xét tg ADC có
MA=MC (gt); BA=BD (gt) => BM là đường trung bình của tg ADC
=> BM//CD
Xét tg ADE có
BA=BD (gt); NE=ND (gt) => BN là đường trung bình của tg ADE
=> BN//AE
Mà CD//AE (cạnh đối hbh)
=> BM//AE (cùng //CD)
\(\Rightarrow BN\equiv BM\) (từ 1 điểm ngoài đường thẳng cho trước chỉ dựng được duy nhất 1 đường thẳng // với đường thẳng đã cho)
=> M, B, N thẳng hàng
Bạn tự vẽ hình nha!!!
a.)Xét\(\Delta ABD\)và\(\Delta ABM\)có:
\(AD=BM\)
\(AB:\)Chung
\(\widehat{DAB}=\widehat{ABM}\left(slt\right)\)
\(\Rightarrow\Delta ABD=\Delta BAM\)
b.)Ta có:\(\Delta ABD=\Delta BAM\)(Theo a)
\(\Rightarrow\widehat{DBA}=\widehat{BAM}\)(mà 2 góc SLT)
\(\Rightarrow AM//BD\)
c.)Xét\(\Delta ADI\)và\(\Delta IMC\)có:
\(AD=CM\)
\(\widehat{DAI}=\widehat{IMC}\)
\(AI=IM\)
\(\Rightarrow\Delta AID=\Delta IMC\)
\(\Rightarrow IA=IC\)
\(\Rightarrow I\)là trung điểm của\(AC\)
\(\Rightarrow I,A,C\)thẳng hàng(đpcm)
P/s:#Study well#