K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2019

4n+3 + 4n+2 - 4n-1 - 4n 

= 4n( 4^3 + 4^2 - 4 - 1 )

= 4n . 75

= 4n-1 . 4 . 75

= 4n-1 . 300

=> đpcm

22 tháng 8 2017

a) ta có : \(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)=n^2+5n-\left(n^2+2n-3n-6\right)\)

\(=n^2+5n-n^2-2n+3n-6=6n-6=6\left(n-1\right)⋮6\)

\(\Rightarrow n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\) chia hết cho \(6\)

vậy \(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\) chia hết cho \(6\) (đpcm)

b) ta có : \(\left(n-1\right)\left(n+1\right)-\left(n-7\right)\left(n-5\right)=n^2-1-\left(n^2-5n-7n+35\right)\)

\(=n^2-1-n^2+5n+7n-35=12n-36=12\left(n-3\right)⋮3⋮4\)

\(\Rightarrow\left(n-1\right)\left(n+1\right)-\left(n-7\right)\left(n-5\right)\) chia hết cho \(4\)\(3\)

vậy \(\left(n-1\right)\left(n+1\right)-\left(n-7\right)\left(n-5\right)\) chia hết cho \(4\)\(3\) (đpcm)

22 tháng 8 2017

\(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\\ =n^2+5n-\left(n^2+2n-3n-6\right)\\ =n^2+5n-\left(n^2-n-6\right)\\ =n^2+5n-n^2+n+6\\ =\left(n^2-n^2\right)+\left(5n+n\right)+6\\ =6n+6\\ =6\left(n+1\right)⋮6\)

vậy ...

\(\left(n-1\right)\left(n+1\right)-\left(n-7\right)\left(n-5\right)\\ =n^2-1-\left[\left(n-6\right)^2-1\right]\\ =n^2-1-\left(n-6\right)^2+1\\ =n^2-\left(n-6\right)^2\\ =\left(n+n-6\right)\left(n-n+6\right)\\ =6\left(2n-6\right)\\ =6\cdot2\left(n-3\right)\\ =12\left(n-3\right)⋮4\text{ và }3\)

vậy ...

17 tháng 10 2021

Giúp với

Chứng tỏ rằng 3^4+3^5+3^6+3^7+3^8+3^9 chia hết cho 4 không tính nhân ra rồi chia nha


 

15 tháng 7 2016

\(A=1^n+2^n+3^n+4^n\)

n không chia hết cho 4 thì n chỉ có thể có các số dư: 1; 2; 3 khi chia cho 4.

Ta lập bảng chữ số tận cùng

nn=4k+1n=4k+2n=4k+3
1n111
2n...2...4...8
3n...3...9...7
4n...4...6...4
A=1n+2n+3n+4n...0...0...0

A luôn có tận cùng là 0 nên A chia hết cho 10 => A chia hết cho 5 - đpcm

23 tháng 10 2016

Đặt A=\(4^{n+3}+4^{n+2}-4^{n+1}-4^n\)

A=\(4^{n-1}\left(4^4+4^3-4^2-4\right)\)

A=\(4^{n-1}\cdot300⋮300\)

23 tháng 10 2016

Ta có:

\(4^{n+3}+4^{n+2}-4^{n+1}-4^n\)

\(=4^{n-1}.4^4+4^{n-1}.4^3-4^{n-1}.4^2-4^{n-1}.4\)

\(=4^{n-1}.\left(4^4+4^3-4^2-4\right)\)

\(=4^{n-1}.300⋮300\)

\(\Rightarrow4^{n+3}+4^{n+2}-4^{n+1}-4^n⋮300\left(đpm\right)\)

 

20 tháng 12 2015

tích từ bài từng câu a , b , ... ra đi