K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2017

ta có:

x(x + 1)(x + 2)(x + 3) + 1 
x(x + 3)[(x + 1)(x + 2)] + 1  
(x² + 3x)(x² + 3x + 2) + 1 
(x² + 3x)(x² + 3x) + 2(x² + 3x) + 1 
(x² + 3x + 1)² = 0 
 

12 tháng 2 2017

Ta có:     x(x+3).(x+1)(x+2) + 1  =  (x^2 + 3x)(x^2 + 3x + 2)  + 1 (*)

   Đặt x^2 + 3x =t khi đó (*) trở thành:  

                           t(t+2) + 1 = t^2 + 2t + 1

                                           = (t+1)^2    (1)

   Thay t=x^2+3x vào(1)=>  (x^2 + 3x + 1) 

 Đây là cách giải thường được AD cho những dạng toán như thế này.Nhưng bài này cũng có thể giải như bạn đã trả lời câu hỏi này trước mình

29 tháng 11 2018

\(x^{20}+x+1=\left(x^{20}-x^2\right)+\left(x^2+x+1\right)\)

\(=x^2\left(x^{18}-1\right)+x^2+x+1\)

\(=x^2\left(x^6-1\right)\left(x^{12}+x^6+1\right)+x^2+x+1\)

\(=\left(x^{14}+x^8+x^2\right)\left(x^6-1\right)+x^2+x+1\)

\(=\left(x^{14}+x^8+x^2\right)\left(x^3+1\right)\left(x-1\right)\left(x^2+x+1\right)+x^2+x+1\)

\(=\left(x^{18}-x^{17}+x^{15}-x^{14}+x^{12}-x^{11}+x^9-x^8+x^6-x^5+x^3-x^2+1\right)\left(x^2+x+1\right)\)

9 tháng 8 2015

x5+x+1=(x5+x4+x3)-(x4+x3+x2)+(x2+x+1)=x3(x2+x+1)-x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x3-x2+1)

9 tháng 8 2015

mình chỉ mới lớp 7 hông giải được

sorry nha

13 tháng 12 2017

a)  x2 - x - 12 

= x2 - 4x + 3x - 12

= x(x - 4) + 3(x - 4)

= (x - 4)(x + 3)

b) x3 - y3 - 3x2 + 3x - 1

= (x3 - 3x2 + 3x - 1) - y3

= (x - 1)3 - y3

= (x - 1 - y) [ (x - 1)2 + (x - 1)y + y2 ]

= (x - y - 1)(x2 - 2x + 1 + xy - y + y2 )

d) 4x3 - 5x2 - 16x + 20

= (4x3 - 8x2) + (3x2 - 6x) - (10x - 20)

= 4x2 (x - 2) + 3x(x - 2) - 10(x - 2)

= (x - 2)(4x2 + 3x - 10)

= (x - 2)(4x2 + 8x - 5x - 10)

= (x - 2)(x + 2)(4x - 5)