GPT
(2-x)/2002-1=(1-x)/2003-x/2004
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`(2-x)/2002-1=(1-x)/2003-x/2004`
`<=>(2-x)/2002-1+(x-1)/2003+x/2004=0`(chuyển vế)
`<=>(2-x)/2002+1+(x-1)/2003-1+x/2004-1=0`
`<=>(2004-x)/2002+(x-2004)/2003+(x-2004)/2004=0`
`<=>(x-2004)(1/2003+1/2004-1/2002)=0`
`<=>x=2004` do `1/2003+1/2004-1/2002 ne 0`
Vậy `x=2004`
\(\frac{\sqrt{x-2002}}{x-2002}-\frac{1}{x-2002}+\frac{\sqrt{y-2003}}{y-2003}-\frac{1}{y-2003}+\frac{\sqrt{z-2004}}{z-2004}-\frac{1}{z-2004}=\frac{3}{4}\)
\(1-\frac{1}{x-2002}+1-\frac{1}{y-2003}+1-\frac{1}{z-2004}=\frac{3}{4}\)
\(3-\frac{1}{x-2002}-\frac{1}{y-2003}-\frac{1}{z-2004}=\frac{3}{4}\)
\(\frac{1}{x-2002}+\frac{1}{y-2003}+\frac{1}{z-2004}=3-\frac{3}{4}=\frac{9}{4}\)
=> không có giá trị x,y,z thỏa mãn đề
\(\left(x-\frac{1}{2004}\right)+\left(x-\frac{2}{2003}\right)-\left(x-\frac{3}{2002}\right)=x-\frac{4}{2001}\)
\(x-\frac{1}{2004}+x-\frac{2}{2003}-x+\frac{3}{2002}-x=-\frac{4}{2001}\)
\(x+x-x-x-\frac{1}{2004}-\frac{2}{2003}+\frac{3}{2002}=-\frac{4}{2001}\)
\(0x-\frac{1}{2004}-\frac{2}{2003}+\frac{3}{2002}=-\frac{4}{2001}\)
\(\Rightarrow\) Vô lý
Vậy \(x\in\phi\)