Cho tam giác ABC thỏa mãn:
1) A>90 độ.
2) Độ dài các cạnh là các số tự nhiên chẵn liên tiếp.
Tìm độ dài các cạnh của tam giác ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt độ dài cạnh AB = x; điều kiện: x > 0
Theo bài ra theo điều (1) ta có: BC = x + 2a (3)
Ta có:
\(\frac{1}{AB}+\frac{1}{AC}+\frac{1}{AH}=1\)
\(\Leftrightarrow\frac{1}{AB^2}+\frac{1}{AC^2}+\frac{1}{AH^2}+\frac{2}{AB.AC}+\frac{2}{AC.AH}+\frac{2}{AB.AH}=1\)
\(\Leftrightarrow\frac{2}{AH^2}+\frac{2}{AH.BC}+\frac{2}{AC.AH}+\frac{2}{AB.AH}=1\)(Do \(\hept{\begin{cases}\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\\AB.AC=AH.BC\end{cases}}\)(Hệ thức lượng)
\(\Leftrightarrow\frac{2}{AH}\left(\frac{1}{AH}+\frac{1}{BC}+\frac{1}{AB}+\frac{1}{AC}\right)=1\)
\(\Leftrightarrow\frac{2}{AH}\left(1+\frac{1}{BC}\right)=1\)(Do \(\frac{1}{AB}+\frac{1}{AC}+\frac{1}{AH}=1\))
\(\Leftrightarrow\frac{BC+1}{BC}=\frac{AH}{2}\)
\(\Leftrightarrow2\left(BC+1\right)=AH.BC\)
\(\Leftrightarrow4BC+4=2AB.AC\)(Do AH.BC = AB.AC)
Kết hợp với Py-ta-go trong tam giác vuông ABC: \(BC^2=AB^2+AC^2\)
\(\Rightarrow BC^2+4BC+4=AB^2+2AB.AC+AC^2\)
\(\Leftrightarrow\left(BC+2\right)^2=\left(AB+AC\right)^2\)
\(\Leftrightarrow AB+AC=BC+2\)(Do \(\hept{\begin{cases}BC+2>0\\AB+AC>0\end{cases}}\))
Mà 3 cạnh AB,AC,BC là 3 cạnh nguyên lớn hơn 0
=> Chỉ có 2 cặp (AB,AC,BC) thỏa mãn: \(\left(3,4,5\right),\left(4,3,5\right)\)