so sánh
2^589 và 5^255
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 5\(^5\) > 2\(^{10}.3\) \(\Leftrightarrow\left(5^5\right)\)\(^{51}\) > (2\(^{10}\))\(^{51}\)\(.3^{51}\) = 2\(^{510}\)\(.3^{51}\).
Vế phải 2\(^{589}\)= 2\(^{510}\)\(.2^{79}\).
Nếu chứng minh được 3\(^{51}\) > 2\(^{79}\) \(\Rightarrow\) 5\(^{255}\) > 2\(^{589}\).
Ta có 3\(^7\) > 2\(^{11}\) \(\Rightarrow\) (3\(^7\))\(^7\) > (2\(^{11}\))\(^7\) \(\Leftrightarrow\) 3\(^{49}\) > 2\(^{77}\), mà 3\(^2\) > 2\(^2\) nên 3\(^{51}\)> 2\(^{79}\)\(\Rightarrow\) đpcm !
1) \(\sqrt[3]{x+1}=5\)
\(\Rightarrow x+1=125\)
\(\Rightarrow x=124\)
2) \(\sqrt[3]{1-3x^3}=-2\)
\(\Rightarrow1-3x^3=-8\)
\(\Rightarrow3x^3=9\)
\(\Rightarrow x=\sqrt[3]{3}\)
2^589>5^255
tích đúng cho mình nha