K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1,

Đặt A = n3 - n2 + n - 1

Ta có A = n2(n - 1) + (n - 1) = (n - 1)(n2 + 1)

Vì A nguyên tố nên A chỉ có 2 Ư. Ư thứ 1 là 1 còn Ư thứ 2 nguyên tố nên ta suy ra 2 trường hợp :

TH1 : n - 1 = 1 và n2 + 1 nguyên tố 

n = 2 và n2 + 1 = 5 nguyên tố (thỏa)

TH2 : n2 + 1 = 1 và n - 1 nguyên tố 

n = 0 và n - 1 = - 1( ko thỏa)

Vậy n = 2

2 , 

Xột số   A = (2n – 1)2n(2n + 1)

A là tích của 3 số tự nhiên liờn tiệp nên A   ⋮   3  

Mặt khỏc 2n – 1 là số nguyên tố   ( theo giả thiết )

                2n  không chia hết cho 3

Vậy 2n + 1 phải chia hết cho 3 ⇒  2n + 1 là hợp số.

26 tháng 12 2022

\(n^2+4n=n\left(n+4\right)\)

Để n(n+4) là số nguyên tố thì (n+4;n): (4;1);(1;4);(-1;-4);(-4;-1)

Nếu n+4 = 4; n=1 => n =0 hoặc n=1

Nếu n+4=1; n=4 => n=-3 hoặc n=4

Nếu n+4 = -1;n=-4 => n = 3 hoặc n=-4

Nếu n+4= -4; n= -1 => n=-8; n=-1

DD
26 tháng 12 2022

\(n^2+4n=n\left(n+4\right)\)

Để \(n^2+4n\) là số nguyên tố thì \(\left[{}\begin{matrix}n=1\\n+4=1\end{matrix}\right.\).

Với \(n=1\)\(n^2+4n=5\) (thỏa mãn). 

Với \(n+4=1\Leftrightarrow n=-3\) (không thỏa mãn).

23 tháng 6 2018

Ta có :

Nếu n = 1 suy ra A = 0

Nếu n = 2 suy ra A = 5 là số nguyên tố

Nếu n>2 thì A là tích của hai thừa số mà mỗi thừa số đều lớn hơn hai . Vậy A là hợp số

Vậy để A = n3 – n2 + n – 1 là số nguyên tố thì n = 2.

14 tháng 11 2023

giúp mik với

 

14 tháng 11 2023

nnhé

 

AH
Akai Haruma
Giáo viên
13 tháng 12 2023

Lời giải:

Để $p=(n-2)(n^2+n-5)$ là số nguyên tố thì bản thân 1 trong 2 thừa số $n-2, n^2+n-5$ là số nguyên tố và số còn lại bằng 1.

TH1: $n-2=1\Rightarrow n=3$. Khi đó: $p=7$ là số nguyên tố (thỏa mãn) 

TH2: $n^2+n-5=1\Rightarrow n^2+n-6=0\Rightarrow (n-2)(n+3)=0$

$\Rightarrow n=2$ 

$\Rightarrow p=0$ không là snt (loại) 

Vậy $n=3$