Cho hbh ABCD có BC=2AB và góc A=60 độ.Gọi M,N lần lượt là trung điểmcủa BC và AD.E là điểm đ/x vs Aqua B.
a, ABMN là hình j, vì sao
b, C/m AEMN là htc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2:
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)
=>ADME là hình chữ nhật
b: Hình chữ nhật ADME trở thành hình vuông khi AM là phân giác của góc BAC
Xét ΔABC có
AM là đường trung tuyến
AM là đường phân giác
Do đó: ΔABC cân tại A
=>AB=AC
3:
\(ab\left(a+b\right)-bc\left(b+c\right)-ac\left(c-a\right)\)
\(=a^2b+ab^2-b^2c-bc^2+ac\left(a-c\right)\)
\(=\left(a^2b-bc^2\right)+\left(ab^2-b^2c\right)+ac\left(a-c\right)\)
\(=b\left(a^2-c^2\right)+b^2\left(a-c\right)+ac\left(a-c\right)\)
\(=b\left(a-c\right)\left(a+c\right)+\left(a-c\right)\left(b^2+ac\right)\)
\(=\left(a-c\right)\left(ba+bc+b^2+ac\right)\)
\(=\left(a-c\right)\left[\left(ba+b^2\right)+\left(bc+ac\right)\right]\)
\(=\left(a-c\right)\left[b\left(a+b\right)+c\left(a+b\right)\right]\)
1:
a: Ta có: ABCD là hình bình hành
=>AD=BC(1)
Ta có: M là trung điểm của AD
=>\(MA=MD=\dfrac{AD}{2}\left(2\right)\)
Ta có:N là trung điểm của BC
=>\(NB=NC=\dfrac{BC}{2}\)(3)
Từ (1),(2),(3) suy ra AM=MD=CN=NB
Xét tứ giác AMNB có
AM//NB
AM=NB
Do đó: AMNB là hình bình hành
Hình bình hành AMNB có AM=AB(=AD/2)
nên AMNB là hình thoi
b: Ta có: AMNB là hình thoi
=>MN=AM
mà \(AM=\dfrac{AD}{2}\)
nên \(NM=\dfrac{AD}{2}\)
Xét ΔNAD có
NM là đường trung tuyến
\(NM=\dfrac{AD}{2}\)
Do đó: ΔNAD vuông tại N
=>AN\(\perp\)ND
c:
Ta có: AB=DC
AB=AI
Do đó: DC=AI
Ta có: AB//DC
I\(\in\)AB
Do đó: IA//DC
Xét ΔABN có BA=BN(=BC/2) và \(\widehat{B}=60^0\)
nên ΔBAN đều
=>\(AN=BN=\dfrac{BC}{2}\)
Xét ΔBAC có
AN là đường trung tuyến
\(AN=\dfrac{BC}{2}\)
Do đó: ΔBAC vuông tại A
=>BA\(\perp\)AC
=>CA\(\perp\)AI
Xét tứ giác AIDC có
AI//DC
AI=DC
Do đó: AIDC là hình bình hành
Hình bình hành AIDC có \(\widehat{IAC}=90^0\)
nên AIDC là hình chữ nhật
a) Sửa đề: Cm AE//CF
Ta có: \(AF=FB=\dfrac{AD}{2}\)(F là trung điểm của AD)
\(BE=EC=\dfrac{BC}{2}\)(E là trung điểm của BC)
mà AD=BC(ABCD là hình bình hành)
nên AF=FB=BE=EC
Xét tứ giác AFCE có
AF//CE(gt)
AF=CE(cmt)
Do đó: AFCE là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Suy ra: AE//CF(Hai cạnh đối của hình bình hành AFCE)
b) Xét tứ giác CDFE có
DF=FE=EC=DC(\(=\dfrac{1}{2}BC\))
nên CDFE là hình thoi(Dấu hiệu nhận biết hình thoi)
c) Xét tứ giác BMCD có
BM//CD(gt)
BM=CD(=AB)
Do đó: BMCD là hình bình hành(Dấu hiệu nhận biết hình bình hành)
a, Xet tu giac ABMN co :
BC=2AB
Hay : BM=MC=AB
Va : BM//AN(AD//BC)
=> ABMN hinh binh hanh
(Tu giac co 2 cap canh song song va bang nhau thi la hinh binh hanh)
a: Ta có: BC=DA(BADC là hình bình hành)
\(MB=MC=\dfrac{BC}{2}\)(M là trung điểm của BC)
\(NA=ND=\dfrac{AD}{2}\)(N là trung điểm của AD)
Do đó: MB=MC=NA=ND
Xét tứ giác ABMN có
BM//AN
BM=AN
Do đó: ABMN là hình bình hành
b: Hình bình hành ABMN có BA=BM(=BC/2)
nên ABMN là hình thoi
c: Ta có: MB//AD
=>\(\widehat{EBM}=\widehat{EAD}\)(hai góc đồng vị)
mà \(\widehat{EAD}=60^0\)
nên \(\widehat{EBM}=60^0\)
Ta có: BA=BE
BA=BM(=BC/2)
Do đó: BE=BM
Xét ΔBEM có BE=BM và \(\widehat{EBM}=60^0\)
nên ΔBEM đều
=>\(\widehat{BEM}=60^0\)
Xét tứ giác ANME có NM//AE(ABMN là hình thoi)
nên ANME là hình thang
Hình thang ANME(NM//AE) có \(\widehat{MEA}=\widehat{A}\left(=60^0\right)\)
nên ANME là hình thang cân
=>AM=NE