K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2023

2:

a: Xét tứ giác ADME có

\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)

=>ADME là hình chữ nhật

b: Hình chữ nhật ADME trở thành hình vuông khi AM là phân giác của góc BAC

Xét ΔABC có

AM là đường trung tuyến

AM là đường phân giác

Do đó: ΔABC cân tại A

=>AB=AC

3:

\(ab\left(a+b\right)-bc\left(b+c\right)-ac\left(c-a\right)\)

\(=a^2b+ab^2-b^2c-bc^2+ac\left(a-c\right)\)

\(=\left(a^2b-bc^2\right)+\left(ab^2-b^2c\right)+ac\left(a-c\right)\)

\(=b\left(a^2-c^2\right)+b^2\left(a-c\right)+ac\left(a-c\right)\)

\(=b\left(a-c\right)\left(a+c\right)+\left(a-c\right)\left(b^2+ac\right)\)

\(=\left(a-c\right)\left(ba+bc+b^2+ac\right)\)

\(=\left(a-c\right)\left[\left(ba+b^2\right)+\left(bc+ac\right)\right]\)

\(=\left(a-c\right)\left[b\left(a+b\right)+c\left(a+b\right)\right]\)

1:

a: Ta có: ABCD là hình bình hành 

=>AD=BC(1)

Ta có: M là trung điểm của AD

=>\(MA=MD=\dfrac{AD}{2}\left(2\right)\)

Ta có:N là trung điểm của BC

=>\(NB=NC=\dfrac{BC}{2}\)(3)

Từ (1),(2),(3) suy ra AM=MD=CN=NB

Xét tứ giác AMNB có

AM//NB

AM=NB

Do đó: AMNB là hình bình hành

Hình bình hành AMNB có AM=AB(=AD/2)

nên AMNB là hình thoi

b: Ta có: AMNB là hình thoi

=>MN=AM

mà \(AM=\dfrac{AD}{2}\)

nên \(NM=\dfrac{AD}{2}\)

Xét ΔNAD có

NM là đường trung tuyến

\(NM=\dfrac{AD}{2}\)

Do đó: ΔNAD vuông tại N

=>AN\(\perp\)ND

c:

Ta có: AB=DC

AB=AI

Do đó: DC=AI

Ta có: AB//DC

I\(\in\)AB

Do đó: IA//DC

Xét ΔABN có BA=BN(=BC/2) và \(\widehat{B}=60^0\)

nên ΔBAN đều

=>\(AN=BN=\dfrac{BC}{2}\)

Xét ΔBAC có

AN là đường trung tuyến

\(AN=\dfrac{BC}{2}\)

Do đó: ΔBAC vuông tại A

=>BA\(\perp\)AC

=>CA\(\perp\)AI

Xét tứ giác AIDC có

AI//DC

AI=DC

Do đó: AIDC là hình bình hành

Hình bình hành AIDC có \(\widehat{IAC}=90^0\)

nên AIDC là hình chữ nhật

a) Sửa đề: Cm AE//CF

Ta có: \(AF=FB=\dfrac{AD}{2}\)(F là trung điểm của AD)

\(BE=EC=\dfrac{BC}{2}\)(E là trung điểm của BC)

mà AD=BC(ABCD là hình bình hành)

nên AF=FB=BE=EC

Xét tứ giác AFCE có 

AF//CE(gt)

AF=CE(cmt)

Do đó: AFCE là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Suy ra: AE//CF(Hai cạnh đối của hình bình hành AFCE)

b) Xét tứ giác CDFE có 

DF=FE=EC=DC(\(=\dfrac{1}{2}BC\))

nên CDFE là hình thoi(Dấu hiệu nhận biết hình thoi)

c) Xét tứ giác BMCD có 

BM//CD(gt)

BM=CD(=AB)

Do đó: BMCD là hình bình hành(Dấu hiệu nhận biết hình bình hành)

22 tháng 1 2017

a, Xet tu giac ABMN co : 

BC=2AB

Hay : BM=MC=AB

Va : BM//AN(AD//BC)

=> ABMN hinh binh hanh 

(Tu giac co 2 cap canh song song va bang nhau thi la hinh binh hanh)

22 tháng 1 2017

hugjhgyhvbhvmn

21 tháng 12 2023

a: Ta có: BC=DA(BADC là hình bình hành)

\(MB=MC=\dfrac{BC}{2}\)(M là trung điểm của BC)

\(NA=ND=\dfrac{AD}{2}\)(N là trung điểm của AD)

Do đó: MB=MC=NA=ND

Xét tứ giác ABMN có

BM//AN

BM=AN

Do đó: ABMN là hình bình hành

b: Hình bình hành ABMN có BA=BM(=BC/2)

nên ABMN là hình thoi

c: Ta có: MB//AD

=>\(\widehat{EBM}=\widehat{EAD}\)(hai góc đồng vị)

mà \(\widehat{EAD}=60^0\)

nên \(\widehat{EBM}=60^0\)

Ta có: BA=BE

BA=BM(=BC/2)

Do đó: BE=BM

Xét ΔBEM có BE=BM và \(\widehat{EBM}=60^0\)

nên ΔBEM đều

=>\(\widehat{BEM}=60^0\)

Xét tứ giác ANME có NM//AE(ABMN là hình thoi)

nên ANME là hình thang

Hình thang ANME(NM//AE) có \(\widehat{MEA}=\widehat{A}\left(=60^0\right)\)

nên ANME là hình thang cân

=>AM=NE