K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2019

\(AB^2+BC^2=8^2+15^2=64+225=289\)

\(AC^2=17^2=289\)

\(\Rightarrow AB^2+BC^2=AC^2\Rightarrow\Delta ABC\) vuông tại B

hình bạn tự vé nhé.

tam giác ABC vuông tại A nên theo định lý PY-Ta-Go ta có:

\(AB^2+AC^2=BC^2\)

\(\Rightarrow6^2+8^2=BC^2\)

\(\Rightarrow BC=10\left(DO-BC>0\right)\)

b) xét \(\Delta ABC\) VÀ  \(\Delta HBA\) CÓ:

\(\widehat{BAC}=\widehat{AHB}\)

\(\widehat{B}\) CHUNG

\(\Rightarrow\Delta ABC\) đồng dạng vs  \(\Delta HBA\)

c)sửa đề:\(AB^2=BH.BC\)

TA CÓ: \(\Delta ABC\text{ᔕ}\Delta HBA\)

\(\Rightarrow\frac{AB}{BH}=\frac{BC}{AB}\left(tsđd\right)\)

\(\Rightarrow AH^2=BH.BC\)

31 tháng 5 2021

ai help mik bài này đc ko

 

31 tháng 5 2021

a) ΔABC vuông tại A 

Áp dụng định lý Pi-ta-go ta có: 

BC2 = AC2+AB2

⇒BC2-AC2=AB2

⇒100-64=AB2

⇒36=AB

⇒AB=6(cm)

b) Xét ΔAIB và ΔDIB có:

góc BAI = góc BDI (= 90 độ)

Chung IB

góc IBA = góc IBD (gt)

⇒ ΔAIB = ΔDIB (ch-gn)

⇒ BA = BD (2 cạnh tương ứng)

c)  Gọi giao BI và AD là F

Xét ΔABF và ΔDBF có:

AB = DB (cmb)

góc ABF = góc DBF (gt)

chung BF

⇒ ΔABF = ΔDBF (c.g.c)

⇒ FA = FD (2 cạnh tương ứng)

góc BFA = góc BFD (2 góc tương ứng) mà góc góc này kề bù nên góc BFA = góc BFD = 90 độ ⇒ BF⊥AD

Vì FA = FD, BF⊥AD ⇒ BI là đường trung trực của AD

d) Gọi giao của BI và EC là G

Xét ΔEBC có: CA⊥BE, ED⊥BC nên I là trọng tâm của ΔEBC nên BG là đường cao thứ 3 của ΔEBC ⇒ BG⊥EC ⇒ BI⊥EC

 

3 tháng 10 2017

Ta có: \(AB^2+AC^2=8^2+15^2=289=17^2=BC^2\)

\(\Rightarrow\Delta ABC\) vuông tại A.

Ta có: \(S_{ABC}=\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.BC.AH\)

\(\Leftrightarrow BC.AH=AB.AC=8.15=120\)

\(\Leftrightarrow AH=\dfrac{120}{BC}=\dfrac{120}{17}\)

Xét \(\Delta AHC\) vuông tại H có:

\(HC^2=AC^2-AH^2=15^2-\dfrac{120^2}{17^2}=\dfrac{50625}{289}\)

\(\Rightarrow HC=\dfrac{225}{17}\)

19 tháng 9 2021

Áp dụng tỉ số lượng giác của góc nhọn trong tam giác ABC vuông tại A :

\(sinB=\dfrac{AC}{BC}\)

\(\Rightarrow sin30^0=\dfrac{AC}{8}\)

\(\Rightarrow\dfrac{AC}{8}=\dfrac{1}{2}\Rightarrow AC=4\left(cm\right)\)

Xét tam giác ABC vuông tại A có:

\(BC^2=AB^2+AC^2\left(Pytago\right)\)

\(\Rightarrow AB^2=BC^2-AC^2=8^2-4^2=48\)

\(\Rightarrow AB=4\sqrt{3}\left(cm\right)\)

 

19 tháng 9 2021

Tại sao \(\dfrac{AC}{8}\) lại bằng \(\dfrac{1}{2}\)  thế ạ?

14 tháng 2 2020

A B C M N H a) Xét △ABC,ta có :△ABC cân tại A nên

AB=AC, ∠ABC = ∠ACB( t/c tam giác cân)

Vì AH⊥BC nên ∠AHB = ∠AHC

# Xét △AHB vs △AHC, ta có :

∠AHB=∠AHC(=90o)

AB=AC

∠ABC = ∠ACB

⇒△AHB = △AHC(ch-gn)

⇒HB=HC( 2 cạnh tương ứng )

b)Vì △AHB = △AHC(cmt) nên ∠HAB = ∠HAC(2 góc tương ứng)

Vì HM ⊥ AB nên ∠HMA =90o

Vì HN ⊥ AC nên ∠HMB =90o

#Xét △AHM vs △AHN, ta có:

∠AHM =∠AHN(=90o)

AH là cạnh chung

∠MAH=∠NAH(cmt)

⇒△AHM = △AHN (ch-gn)

c) Lúc nữa. khocroi

14 tháng 2 2020

c)Xét △AHB vuông tại H, ta có :

AH2+HB2=AB2

Thay AH=8,AB=10;ta có

82+HB2=102

HB2=100-64=36=62

⇒HB=6cm

AB=AC(cmt)⇒AC=10cm

Xét △AHC vuông tại H,ta có:

AH2+HC2=AC2

Thay AH=8cm, AC=10;ta có

82+ HC2=102

⇒HC2=100-64=36=62

⇒HC=6cm

Vì H ∈ BC nên HB + HC =BC

⇒BC=6+6=12cm

vậy diện tích tam giác ABC là

8*12/2=48cm2

a) Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC(ΔABC cân tại A)

AH là cạnh chung

Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)

b) Ta có: ΔABH=ΔACH(cmt)

\(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)

hay \(\widehat{MAH}=\widehat{NAH}\)

Xét ΔAMH vuông tại M và ΔANH vuông tại N có

AH là cạnh chung

\(\widehat{MAH}=\widehat{NAH}\)(cmt)

Do đó: ΔAMH=ΔANH(cạnh huyền-góc nhọn)

⇒AM=AN(hai cạnh tương ứng)

c) Ta có: ΔAHB=ΔAHC(cmt)

⇒HB=HC(hai cạnh tương ứng)

Xét ΔBMH và ΔCNH có

HB=HC(cmt)

\(\widehat{B}=\widehat{C}\)(hai góc ở đáy trong ΔABC cân tại A)

Do đó: ΔBMH=ΔCNH(cạnh huyền-góc nhọn)

d) Xét ΔAMN có AM=AN(cmt)

nên ΔAMN cân tại A(định nghĩa tam giác cân)

\(\widehat{AMN}=\frac{180^0-\widehat{A}}{2}\)(số đo của một góc ở đáy trong ΔAMN cân tại A)(1)

Ta có: ΔABC cân tại A(gt)

\(\widehat{ABC}=\frac{180^0-\widehat{A}}{2}\)(số đo của một góc ở đáy trong ΔABC cân tại A)(2)

Từ (1) và (2) suy ra \(\widehat{AMN}=\widehat{ABC}\)

\(\widehat{AMN}\)\(\widehat{ABC}\) là hai góc ở vị trí đồng vị

nên MN//BC(dấu hiệu nhận biết hai đường thẳng song song)

e)

*Tính AB

Ta có: HB=HC(cmt)

mà HB+HC=BC(H nằm giữa B và C)

nên \(BH=CH=\frac{BC}{2}=\frac{12cm}{2}=6cm\)

Áp dụng định lí pytago vào ΔABH vuông tại H, ta được

\(AB^2=BH^2+AH^2\)

hay \(AB^2=6^2+8^2=100\)

\(AB=\sqrt{100}=10cm\)

Vậy: AB=10cm

8 tháng 4 2020

Thank you ^-^

29 tháng 5 2022

Bạn tự vẽ hình nhé

a)

Áp dụng định lý Py-ta-go vào \(\Delta ABC:\)

\(BC^2=AB^2+AC^2\\ \Rightarrow BC^2=8^2+6^2\\ \Rightarrow BC^2=64+36\\ \Rightarrow BC^2=100\\ \Rightarrow BC=10\left(cm\right)\)

b)

Xét \(\Delta BGC\) và \(\Delta DGC\) có:

\(AB=AD\left(GT\right)\\ AG:chung\\ \widehat{BAC}=\widehat{DAC}\left(=90^o\right)\)

\(\Rightarrow\Delta BGC=\Delta DGC\left(c-g-c\right)\)

c)

Xét \(\Delta BCD\) có:

\(AB=AD\left(GT\right)\\ \dfrac{AG}{DG}=\dfrac{2}{6}=\dfrac{1}{3}\Rightarrow\dfrac{CG}{AC}=1-\dfrac{1}{3}=\dfrac{2}{3}\)

=> G là trọng tâm của \(\Delta BCD\)

=> DG là đường trung tuyến của \(\Delta BCD\) ứng với cạnh BC

Hay DG đi qua trung điểm BC

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)

nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)(Tính chất đường phân giác của tam giác)

hay \(\dfrac{AD}{6}=\dfrac{CD}{10}\)

mà AD+CD=AC(D nằm giữa A và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{6}=\dfrac{CD}{10}=\dfrac{AD+CD}{6+10}=\dfrac{AC}{16}=\dfrac{8}{16}=\dfrac{1}{2}\)

Do đó: \(\dfrac{AD}{6}=\dfrac{1}{2}\)

hay AD=3(cm)

Vậy: AD=3cm

13 tháng 2 2019

gọi cạnh AF là x,BC là y

ta có AB=AE+EB=3+6=9cm;

theo định lý Ta Lét đảo ,ta có :

AE/EB=AF/FC hay 3/6 = x/5

<=>3.5=6.x<=>15=6.x<=> x=2,5

=> AC =AF+FC=2,5+5=7,5cm

mặc khác ta có:

AE/AB=EF/BC hay 3/6=8/y

<=>3.y=6.8<=>3.y=48<=>y=16

=>BC=16cm