K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2019

Để f(x) > 0 thì:

th1: \(\hept{\begin{cases}2-x>0\\x+3>0\\4-x>0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 2\\x>-3\\x< 4\end{cases}\Leftrightarrow}-3< x< 2}\)

th2: \(\hept{\begin{cases}2-x< 0\\x+3< 0\\4-x>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>2\\x< -3\\x< 4\end{cases}\Leftrightarrow}2< x< -3}\)(vô lí)

th3:\(\hept{\begin{cases}2-x< 0\\x+3>0\\4-x< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>2\\x>-3\\x>4\end{cases}\Leftrightarrow}x>4}\)

th4:\(\hept{\begin{cases}2-x>0\\x+3< 0\\4-x< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 2\\x< -3\\x>4\end{cases}\Leftrightarrow}4< x< -3}\)(vô lí)

Vậy x>-3 và x khác 4 thì f(x) > 0

Trường hợp 1: m=3

=>f(x)=-2(3-2)x+3=-2x+3 không thể luôn luôn dương

=>Loại

Trường hợp 2: m<>3

\(\text{Δ}=\left(2m-4\right)^2-4m\left(m-3\right)\)

\(=4m^2-16m+16-4m^2+12m=-4m+16\)

Để f(x)>0 với mọi x thì \(\left\{{}\begin{matrix}-4m+16< 0\\m-3>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-4m< -16\\m>3\end{matrix}\right.\Leftrightarrow m>4\)

19 tháng 2 2021

Vì a=1>0 nên để f(x) luôn dương <=> \(\Delta< 0\)

<=>[-(m+2)]2-4(8m+1)<0

<=>m2+4m+4-32m-4<0

<=>m2-28m<0 <=> 0<m<28

Vậy f(x) luôn dương khi m thuộc (0;28)

NV
15 tháng 3 2022

Chắc đề là \(f\left(x\right)=x^2+mx+m+3\)

Để \(f\left(x\right)>0;\forall x\in R\)

\(\Leftrightarrow\Delta=m^2-4\left(m+3\right)< 0\)

\(\Leftrightarrow m^2-4m-12< 0\)

\(\Rightarrow-2< m< 6\)

26 tháng 1 2020

Ta có: \(2|x+1|-\left(x+4\right)>0\)

\(\Leftrightarrow2|x+1|>x+4\)

\(\Leftrightarrow\)

  • \(x+4< 0\Leftrightarrow x< -4\)
  • \(x+4\ge0\Leftrightarrow x\ge-4\)
  • \(2\left(x+1\right)< -\left(x+4\right)\Leftrightarrow x< -2\)
  • \(2\left(x+1\right)>x+4\Leftrightarrow x>2\)

Từ trên: \(\Leftrightarrow\hept{\begin{cases}x< -4\\-4\le x\le-2\\x>2\end{cases}}\)

Qua trên ta suy ra được: \(x\in\left(-\infty;-2\right)\) hợp \(\left(2,+\infty\right)\)

6 tháng 6 2019

a,Bạn có thể tự làm

b,Có f(x)+g(x)-h(x)=4x^2+3x-2+3x^2-2x+5-5x^2+2x-3=2x^2+3x=x(2x+3)

Để f(x)+g(x)-h(x)=0

thi x(2x+3)=0

suy ra x=0 hoặc x=-3/2

c,f(x)-3x+5=4x^2+3x-2-3x+5=4x^2+3>0 với mọi x

Chúc bạn học tốt!

6 tháng 6 2019

a) \(f\left(x\right)=4x^2+3x-2\)

\(\Leftrightarrow f\left(\frac{-1}{2}\right)=4.\left(\frac{-1}{2}\right)^2+3.\frac{-1}{2}-2\)

\(\Leftrightarrow f\left(\frac{-1}{2}\right)=4.\frac{1}{4}+\frac{-3}{2}-\frac{4}{2}\)

\(\Leftrightarrow f\left(\frac{-1}{2}\right)=1+\frac{-7}{2}\)

\(\Leftrightarrow f\left(\frac{-1}{2}\right)=\frac{2}{2}+\frac{-7}{2}\)

\(\Leftrightarrow f\left(\frac{-1}{2}\right)=\frac{-5}{2}\)

12 tháng 4 2016

a,F(-1/2)=4.-1/2^2+3.-1/2-2

=F(-1/2)=-5/2