K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2019

Để \(A\in Z\Rightarrow5⋮\sqrt{x-3}\)
\(\Rightarrow\sqrt{x-3}\inƯ\left(5\right)=\left\{\pm5;\pm1\right\}\)
\(\Rightarrow x-3\in\left\{1;25\right\}\)
\(\Rightarrow\orbr{\begin{cases}x-3=1\\x-3=25\end{cases}\Rightarrow\orbr{\begin{cases}x=4\\x=28\end{cases}}}\)
Vậy \(x\in\left\{4;28\right\}\)

16 tháng 12 2016

\(A=\frac{x^2+4x+7}{x-3}=\frac{x\left(x-3\right)+3x+4x+7}{x-3}=\frac{x\left(x-3\right)+7\left(x-3\right)+21+7}{x-3}\)\(=\frac{\left(x-3\right)\left(x+7\right)+28}{x-3}=x+7+\frac{28}{x-3}\)

(x-3) phải thuộc ước của  28=[+-1,+-2,+,4,+-7,+-14,+-28}

x={-25,-11,-4,1,2,4,5,7,10,17,31} nhiêu quá

16 tháng 12 2016

cảm ơn bạn nhiều

18 tháng 1 2018

Đk: x#-3 
Với (*), A= (- 2x - 6 + 7)/(x + 3) = -2 + 7/(x+3) 
A nguyên <=> x + 3 thuộc Ư(7)={1;-1;7;-7} 
=> S = {-2;- 4;4;-10}

23 tháng 8 2016

a)để A max thì 9-x min

do đó : 9-x bé hơn hoặc bằng 0. Mặt khác : A=2016\9-x => 9-x khác 0

do đó : 9-x bé hơn hoặc bằng 1. Mà để A max => 9-x min => 9-x=1=> x=8

Và A max=2016

b) B=x​-5\x2-2 => B= x2-2-3\x2-2 = 1-3\x2-2

vì 1 là số nguyên => Đê B nguyên thì 3\x2-2 nguyên => x2-2 thuộc ước của 3

sau đó bạn chỉ cần tìm ước của 3 là tìm dk x

30 tháng 11 2017

 A=[(-4x-8)+13]/(x+2) 
=-4+13/(x+2) thuộc Z <=> 13/(x+2) thuộc Z <=> 13 chia hết cho (x+2)(do x thuộc Z) 
hay (x+2) thuộc Ư(13)={-1;1;13;-13} 
tìm x 
B=[(x²-1)+6]/(x-1) 
=x+1+6/(x-1) 
làm tiếp như A 
C=[(x²+3x+2)-3]/(x+2) 
=[(x+2)(x+1)-3]/(x+2) 
=x+1-3/(x+2) 
làm tiếp như A 
2/cậu cho đề thiếu đọc lại đề xem A có thuộc Z không 
3,4 cũng vậy

11 tháng 1 2018

câu 1L

a, xy+x-y+10=0

x(y+1)-y-1=9

x(y+1)-(y+1)=9

(x-1)(y+1)=9

Ta có bảng:

x-11-13-39-9
y+19-93-31-1
x204-210-8
y8-102-40-2

b, xy+3x+y=10

x(y+3)+(y+3)=13

(x+1)(y+3)=13

tiếp tục giống a

bài 2:

a, Vì |x-5| \(\ge\)0

=>A=|x-5|-100 \(\ge\) -100

Dấu "=" xảy ra khi x = 5

Vậy GTNN của A = -100 khi x=5

b, vì \(\hept{\begin{cases}\left|x+y\right|\ge0\\\left|y-10\right|\ge0\end{cases}\Rightarrow\left|x+y\right|+\left|y-10\right|\ge0\Rightarrow B=\left|x+y\right|+\left|y-10\right|+8\ge8}\)

Dấu "="xảy ra khi x=-10,y=10

Vậy GTNN của B = 8 khi x=-10,y=10

13 tháng 12 2023

\(A=\dfrac{3}{\sqrt{x+1}}\) (đk: x>-1)

Để A nguyên \(\Rightarrow\sqrt{x+1}\) phải là ước của 3

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x+1}=1\\\sqrt{x+1}=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=8\end{matrix}\right.\)

28 tháng 5 2021

\(A=\frac{x+5}{x-4}=\frac{x-4+9}{x-4}=1+\frac{9}{x-4}\)

\(a)\)

\(\text{Để A có giá trị nguyên: }\)

\(\frac{9}{x-4}\in Z\)

\(x-4\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)

\(\rightarrow x\in\left\{1;3;\pm5;7;13\right\}\)

\(b)\)

\(\text{Để A có giá trị lớn nhất: }\)

\(\frac{9}{x-4}\)\(\text{lớn nhất}\)

\(x-4=1\)

\(x=5\)

\(c)\)

\(\text{Để A đạt giá trị nhỏ nhất:}\)

\(\frac{9}{x-4}\)\(\text{nhỏ nhất}\)

\(x-4=-1\)

\(x=3\)

Cho \(A=\frac{x+5}{x-4}=\frac{x-4+9}{x-4}=\frac{x-4}{x-4}+\frac{9}{x-4}=1+\frac{9}{x-4}\left(ĐK:x\in Z,x\ne4\right)\)

Để A nguyên \(\Rightarrow9⋮x-4\)hay \(x-4\inƯ\left(9\right)\)

Ta có \(x-4\inƯ\left(9\right)\in\left\{\pm1;\pm3;\pm9\right\}\)

\(\Rightarrow x\in\left\{5;3;7;1;13;-5\right\}\)

b, Đặt \(B=\frac{9}{x-4}\)\(\Rightarrow A_{max}\)khi \(B_{max}\)

Vì \(9>0\)để B đặt GTLN \(\Rightarrow\hept{\begin{cases}x-4>0\\\left(x-4\right)_{min}\end{cases}}\)

Mà \(x\in N\)\(\Rightarrow x-4=1\)

\(\Rightarrow x=5\)

\(\Rightarrow B_{max}=\frac{9}{5-4}=9\)

\(\Rightarrow A_{max}=1+9=10\)khi \(x=5\)

c, Đặt \(B=\frac{9}{x-4}\)\(\Rightarrow A_{min}\)khi \(B_{min}\)

Vì \(9>0\)để B đạt GTNN \(\Rightarrow\hept{\begin{cases}x-4< 0\\\left(x-4\right)_{max}\end{cases}}\)

Mà \(x\in N\)\(\Rightarrow x-4\in Z\)

\(\Rightarrow x-4=-1\)

\(\Rightarrow x=3\)

\(\Rightarrow B_{min}=\frac{9}{3-4}=-9\)

\(\Rightarrow A_{min}=1+\left(-9\right)=\left(-8\right)\)khi \(x=3\)