K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2019

Hiển nhiên mẫu lớn hơn 0,ta chứng minh tử >0 là xong ^^

\(3\left(x^2+1\right)+x^2y^2+y^2-2\)

\(=3x^2+3+x^2y^2+y^2-2\)

\(=3x^2+x^2y^2+y^2+1>0\rightarrowđpcm\)

21 tháng 2 2020

ko hiểu ,mày bị điên à . Anh thách mày giải được đấy !!!!  Giải được cho tiền nhé !!!! Bye .

23 tháng 3 2016

Xét tử và mẫu của phân số này.

Ta thấy mẫu số là (x+y)^2+5 có (x+y)^2>=0 

                                               5 > 0

=> (x+y)^2+5>0

Ta thấy tử số là 3(x^2+1)+x^2*y^2+y^2-2 có

+) x^2+1>=1 ( do x^2>=0) => 3(x^2+1)>=3

+) x^2*y^2 >=0

+)y^2 >=0

Từ các điều trên => 3(x^2+1)+x^2*y^2+y^2>=3

                        => 3(x^2+1)+x^2*y^2+y^2-2>=1>0

=> M dương

Vậy M luôn dương với mọi x và y

25 tháng 10 2018

\(A=\left(x-y\right)^2\left(z^2-2z+1\right)-2\left(z-1\right)\left(x-y\right)^2+\left(x-y\right)^2\)

\(A=\left(x-y\right)^2\left(z-1\right)^2-2\left(x-y\right)\left(z-1\right)\left(x-y\right)+\left(x-y\right)^2\)

\(A=\left[\left(x-y\right)\left(z-1\right)-\left(x-y\right)\right]^2\ge0\) \(\forall x,y,z\)

4 tháng 10 2019

2. Ta có: P = 2x2 + y2 - 4x - 4y + 10

P = 2(x2 - 2x + 1) + (y2 - 4y + 4) + 4

P = 2(x - 1)2 + (y - 2)2 + 4 \(\ge\)\(\forall\)x;y

=> P luôn dương với mọi biến x;y

3 Ta có:

(2n + 1)(n2 - 3n - 1) - 2n3 + 1

= 2n3 - 6n2 - 2n + n2 - 3n - 1 - 2n3 + 1

= -5n2 - 5n = -5n(n + 1) \(⋮\)\(\forall\)\(\in\)Z

20 tháng 4 2020

1×2=2

AH
Akai Haruma
Giáo viên
1 tháng 4 2021

Lời giải:

$M=\frac{3(x^2+1)+x^2y^2+y^2-2}{(x+y)^2+5}=\frac{3x^2+x^2y^2+y^2+1}{(x+y)^2+5}$

Ta thấy:

$x^2\geq 0; x^2y^2\geq 0; y^2\geq 0$ nên:

$3x^2+x^2y^2+y^2+1\geq 1>0$ với mọi $x\mathbb{Q}, y\in\mathbb{R}$

$(x+y)^2\geq 0\Rightarrow (x+y)^2+5\geq 5>0$ với mọi 

$x\mathbb{Q}, y\in\mathbb{R}$

Do đó: $M>0$ (do cả tử và mẫu đều lớn hơn 0)

Hay $M$ là số dương (đpcm)