K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2023

a) Xét ΔBMC và ΔCNB có :

          BM=CN ( AB=AC; AM=AN )

          góc B = góc C ( ΔABC cân tại A )

         BC : chung

suy ra : hai Δ trên bằng nhau theo trường hợp ( c-g-c )

suy ra : đpcm

b) chứng minh EBC cân nha em

Từ : ΔBMC = ΔCNB

suy ra : góc MCB = góc NBC ( 2 góc tương ứng )

suy ra : đpcm

c) ta có : ΔABC cân tại A

suy ra : góc B = góc C= \(\dfrac{180-A}{2}\) (1)

ta lại có : ΔAMN cân tại A 

suy ra : góc AMN = góc ANM = \(\dfrac{180-A}{2}\) (2)

Từ (1) và (2) suy ra đpcm do (các góc ở vị trí đồng vị và bằng nhau )

6 tháng 7 2017

A M N B C H K

a) Vẽ MH \(⊥\)BC ; NK \(⊥\)BC

tam giác MBH = tam giác NCK ( cạnh huyền, góc nhọn )

suy ra BH = CK

b) tam giác ABN = tam giác ACM ( c.g.c )

suy ra BN = CM

Dễ thấy MN // BC

suy ra MN = HK ( tính chất đoạn chắn )

Ta có : BN > BK ; CM > CH ( quan hệ giữa đường xiên và đường vuông góc )

Vậy BN + CM > BK + CH hay BN + BN > ( BH + HK ) + CH

2BN > ( BH + CH ) + HK ; 2BN > BC + MN \(\Rightarrow BN>\frac{BC+MN}{2}\)

12 tháng 2 2022

a. xét tam giác  ABH và tam giác ACH

AB = AC ( ABC cân )

góc B = góc C ( ABC cân )

BH = CH ( ABC cân, AH là đường cao cũng là trung tuyến )

Vậy tam giác  ABH = tam giác ACH ( c.g.c )

b. xét tam giác vuông BNH và tam giác vuông CNH

BN = CM ( AB = AC ; AM = AN )

BH = CH 

Vậy tam giác vuông BNH = tam giác vuông CNH ( cạnh huyền. cạnh góc vuông )

c. áp dụng định lý pitao vào tam giác vuông AHB:

\(AB^2=AH^2+BH^2\)

\(BH=\sqrt{10^2-8^2}=\sqrt{64}=8cm\)

=> BC = BH. 2 = 8.2 =16 cm

Chúc bạn học tốt!!!

 

 

12 tháng 2 2022

a, Xét tam giác ABH và tam giác ACH 

^AHB = ^AHC = 900

AB = AC (gt) 

AH _ chung 

Vậy tam giác ABH = tam giác ACH ( ch - cgv ) 

b, Xét tam ANB và tam giác AMC có : 

^A _ chung 

AM = AN(gt) 

AB = AC (gt) 

Vậy tam giác ANB = tam giác AMC ( c.g.c ) 

=> BN = CM ( 2 cạnh tương ứng ) 

c, Xét tam giác ABH vuông tại H, theo định lí Pytago 

\(BH=\sqrt{AB^2-AH^2}=6cm\)

Xét tam giác ABC cân tại A có AH là đường cao nên đồng thời AH là đường trung tuyến 

=> BC = 2BH = 12 cm 

21 tháng 12 2016

A B C M N Góc A ko đc chuẩn 100 cho lắm, chịu khó nha

(*) Vì AM = AN nên ΔAMN cân tại A

=> góc AMN = ANM ( 2 góc đáy)

mà AMN + ANM = 180 - BAC => AMN = (180 - BAC) :2 (1)

Do ΔABC cân tại A nên góc ABC = ACB hay MBC = NCB

mà góc ABC + ACB = 180 - BAC => ABC = (180 - BAC ) : 2 (2)

Từ (1) và (2) suy ra AMN = ABC

do 2 góc này ở vị trí so le trong nên MN // BC → đpcm

(*) Ta có: AM + MB = AB

AN + NC = AC

mà AM = AN; AB = AC => MB = NC

Xét ΔBMC và ΔCNB có:

BM = CN (cm trên)

góc MBC = NCB (cm trên)

BC chung

=> ΔBMC = ΔCNB (c.g.c)

=> MC = NB (2 cạnh tương ứng) → đpcm

20 tháng 12 2016

Vì AM = AN (gt) nên t/g AMN cân tại A

=> AMN = ANM

=> MAN = 180o - 2.AMN

Vì t/g ABC cân tại A nên ABC = ACB

=> BAC = 180o - 2.ABC (2)

Từ (1) và (2) => AMN = ABC

Mà AMN và ABC là 2 góc ở vị trí đồng vị nên MN // BC (1)

Xét t/g ABN và t/g ACM có:

AB = AC (gt)

A là góc chung

AN = AM (gt)

Do đó, t/g ABN = t/g ACM (c.g.c)

=> BN = CM (2 cạnh tương ứng) (2)

(1) và (2) là đpcm

18 tháng 1 2017

đây ?

A B C M N I E F

Bài làm

a) Xét tam giác AMN có:

AM = AN 

=> Tam giác AMN cân tại A.

b) Xét tam giác ABC cân tại A có:

\(\widehat{B}=\frac{180^0-\widehat{A}}{2}\)                                            (1) 

Xét tam giác AMN cân tại A có:

\(\widehat{M}=\frac{180^0-\widehat{A}}{2}\)                                         (2) 

Từ (1)(2) => \(\widehat{B}=\widehat{M}\)

Mà hai góc này ở vị trí đồng vị.

=> MN // BC

c) Xét tam giác ABN và tam giác ACM có:

AN = AM ( gt )

\(\widehat{A}\) chung

AB = AC ( Vì tam giác ABC cân )

=> Tam giác ABN = tam giác ACM ( c.g.c )

=> \(\widehat{ABN}=\widehat{ACM}\)( hai cạnh tương ứng )

Ta có: \(\widehat{ABN}+\widehat{MBC}=\widehat{ABC}\)

          \(\widehat{ACM}+\widehat{MCB}=\widehat{ACB}\)

Mà \(\widehat{ABN}=\widehat{ACM}\)( cmt )

      \(\widehat{ABC}=\widehat{ACB}\)( hai góc kề đáy của tam giác cân )

=> \(\widehat{IBC}=\widehat{ICB}\)

=> Tam giác BIC cân tại I

Vì MN // BC

=> \(\widehat{MNI}=\widehat{IBC}\)( so le trong )

     \(\widehat{NMI}=\widehat{ICB}\)( so le trong )

Và \(\widehat{IBC}=\widehat{ICB}\)( cmt )

=> \(\widehat{MNI}=\widehat{NMI}\)

=> Tam giác MIN cân tại I

d) Xét tam giác cân AMN có:

E là trung điểm của MN

=> AE là trung tuyến  

=> AE là đường trung trực.

=> \(\widehat{AEN}=90^0\)                    (1) 

Xét tam giác cân MNI có:

E là trung điểm MN

=> IE là đường trung tuyến

=> IE là trung trực.                            

=> \(\widehat{IEN}=90^0\)        (2) 

Cộng (1)(2) ta được:\(\widehat{IEN}+\widehat{AEN}=90^0+90^0=180^0\) => A,E,I thẳng hàng.                      (3) 

Xét tam giác cân BIC có:

F là trung điểm BC

=> IF là trung tuyến

=> IF là trung trực.

=> \(\widehat{IFC}=90^0\)                

Và MN // BC

Mà \(\widehat{IFC}=90^0\)

=> \(\widehat{IEN}=90^0\)

=> E,I,F thẳng hàng.             (4) 

Từ (3)(4) => A,E,I,F thẳng hàng. ( đpcm )

# Học tốt #

a) Xét ΔABN và ΔACM có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAN}\) chung

AN=AM(gt)

Do đó: ΔABN=ΔACM(c-g-c)

Suy ra: BN=CM(hai cạnh tương ứng)

b) Xét ΔAHB và ΔAHC có 

AB=AC(ΔABC cân tại A)

AH chung

HB=HC(H là trung điểm của BC)

Do đó: ΔAHB=ΔAHC(c-c-c)

Suy ra: \(\widehat{AHB}=\widehat{AHC}\)(hai góc tương ứng)

mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(hai góc kề bù)

nên \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\)

hay AH⊥BC(đpcm)

c) Ta có: AH⊥BC(cmt)

mà H là trung điểm của BC(gt)

nên AH là đường trung trực của BC

⇔EH là đường trung trực của BC

⇔EB=EC(Tính chất đường trung trực của một đoạn thẳng)

Xét ΔEBC có EB=EC(cmt)

nên ΔEBC cân tại E(Định nghĩa tam giác cân)

20 tháng 2 2021

Cảm ơn ạ =))