6x2-(2x-3)(3x+2)-1=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a (x + 2) - x(x + 3) = 2
x + 2 - x(x + 3) - 2 = 0
x + x(x + 3) = 0
x(1 + x + 3) = 0
x(x + 4) = 0
x = 0 hoặc x + 4 = 0
*) x + 4 = 0
x = -4
Vậy x = -4; x = 0
b) (x + 2)(x - 2) - (x + 1)² = 7
x² - 4 - x² - 2x - 1 = 7
-2x - 5 = 7
-2x = 7 + 5
-2x = 12
x = 12 : (-2)
x = -6
c) 6x² - (2x + 1)(3x - 2) = 1
6x² - 6x² + 4x - 3x + 2 = 1
x + 2 = 1
x = 1 - 2
x = -1
d) (x + 2)(x + 3) - (x - 2)(x + 1) = 2
x² + 3x + 2x + 6 - x² - x + 2x + 2 = 2
6x + 8 = 2
6x = 2 - 8
6x = -6
x = -6 : 6
x = -1
e) 6(x - 1)(x + 1) - (2x - 1)(3x + 2) + 3 = 0
6x² - 6 - 6x² - 4x + 3x + 2 + 3 = 0
-x - 1 = 0
x = -1
1) Ta có: \(x^2-4x+4=0\)
\(\Leftrightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x-2=0\)
hay x=2
Vậy: S={2}
a: Ta có: \(\left(3x-2\right)\left(2x-1\right)-\left(6x^2-3x\right)=0\)
\(\Leftrightarrow2x-1=0\)
hay \(x=\dfrac{1}{2}\)
b: Ta có: \(x^3-\left(x+1\right)\left(x^2-x+1\right)=x\)
\(\Leftrightarrow x^3-x^3-1=x\)
hay x=-1
c: Ta có: \(56x^4+7x=0\)
\(\Leftrightarrow7x\left(8x^3+1\right)=0\)
\(\Leftrightarrow x\left(2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{2}\end{matrix}\right.\)
d: Ta có: \(x^2-5x-24=0\)
\(\Leftrightarrow\left(x-8\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-3\end{matrix}\right.\)
a) Ta có: \(\left(x^2-2x\right)^2-6x^2+12x+9=0\)
\(\Leftrightarrow\left(x^2-2x\right)^2-6\left(x^2-2x\right)+9=0\)
\(\Leftrightarrow\left(x^2-2x-3\right)^2=0\)
\(\Leftrightarrow x^2-2x-3=0\)
\(\Leftrightarrow x^2-3x+x-3=0\)
\(\Leftrightarrow x\left(x-3\right)+\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
Vậy: S={3;-1}
b) Ta có: \(\left(x^2+x+1\right)\left(x^2+x+2\right)=12\)
\(\Leftrightarrow\left(x^2+x\right)^2+3\left(x^2+x\right)+2-12=0\)
\(\Leftrightarrow\left(x^2+x\right)^2+5\left(x^2+x\right)-2\left(x^2+x\right)-10=0\)
\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x+5\right)-2\left(x^2+x+5\right)=0\)
\(\Leftrightarrow\left(x^2+x+5\right)\left(x^2+x-2\right)=0\)
\(\Leftrightarrow x^2+x-2=0\)(Vì \(x^2+x+5>0\forall x\))
\(\Leftrightarrow x^2+2x-x-2=0\)
\(\Leftrightarrow x\left(x+2\right)-\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)
Vậy: S={-2;1}
2 ý a và b anh CTV nãy đã làm rồi nha, còn câu c này thì làm dài dòng+không chắc :VVV
c)\(\left(2x^2-3x+1\right)\left(2x^2+5x+1\right)-9x^2=0\)
\(\Leftrightarrow\left(2x^2-3x+1\right)\left(2x^2-3x+1+8x\right)-9x^2=0\)
\(\Leftrightarrow\left(2x^2-3x+1\right)^2+8x\left(2x^2-3x+1\right)+16x^2-25x^2=0\)
\(\Leftrightarrow\left(2x^2-3x+1+4x\right)^2-25x^2=0\)
\(\Leftrightarrow\left(2x^2+x+1\right)^2-25x^2=0\)
\(\Leftrightarrow\left(2x^2+x+1-5x\right)\left(2x^2+x+1+5x\right)=0\)
\(\Leftrightarrow\left(2x^2-4x+1\right)\left(2x^2+6x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(2x^2-4x+1\right)=0\\\left(2x^2+6x+1\right)=0\end{matrix}\right.\)
Rồi đến đây tự giải nhé, không phân tích được thì bấm máy tính là ra nha:vv
\(6x^2-2x\left(3x+\dfrac{3}{2}\right)=9\)
\(\Rightarrow6x^2-6x^2-3x=9\)
\(\Rightarrow-3x=9\)
\(\Rightarrow x=\dfrac{9}{-3}\)
\(\Rightarrow x=-3\)
\(6x^2-2x\left(3x+\dfrac{3}{2}\right)=9\\ \Leftrightarrow6x^2-6x^2-3x=9\\ \Leftrightarrow3x=9\\ \Leftrightarrow x=3\)
\(a,=12x^2-4x-6x-2-x-3=12x^2-11x-5\\ b,=12x^2-9x-12x^2-4x+5=5-13x\\ c,=12x^3-4x^2-12x^3-12x^2+7x-3=-16x^2+7x-3\\ d,=\left(x^2-4\right)\left(x^2+4\right)=x^4-16\)
a.
ĐKXĐ: \(x\le\dfrac{2}{3}\)
\(3x^2-7x+2-\left(1-\sqrt{2-3x}\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(3x-1\right)-\dfrac{3x-1}{1+\sqrt{2-3x}}=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x-2-\dfrac{1}{1+\sqrt{2x-3}}\right)=0\) (1)
Do \(x\le\dfrac{2}{3}\Rightarrow x-2< 0\Rightarrow x-2-\dfrac{1}{1+\sqrt{2-3x}}< 0;\forall x\in TXĐ\)
Nên (1) tương đương:
\(3x-1=0\Leftrightarrow x=\dfrac{1}{3}\)
b.
ĐKXĐ: \(x\ge-\dfrac{1}{2}\)
\(18x^2+6x+3=9x\sqrt{6x+3}\)
Đặt \(\sqrt{6x+3}=y\ge0\) ta được:
\(18x^2+y^2=9xy\)
\(\Leftrightarrow18x^2-9xy+y^2=0\)
\(\Leftrightarrow\left(6x-y\right)\left(3x-y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=3x\\y=6x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{6x+3}=3x\\\sqrt{6x+3}=6x\end{matrix}\right.\) (\(x\ge0\))
\(\Leftrightarrow\left[{}\begin{matrix}6x+3=9x^2\\6x+3=36x^2\end{matrix}\right.\) (\(x\ge0\))
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1+\sqrt{13}}{12}\end{matrix}\right.\)
\(6x^2-\left(2x-3\right)\left(3x+2\right)-1=0\)
\(\Rightarrow6x^2-6x^2+5x+6-1=0\)
\(\Rightarrow5x=-5\Rightarrow x=-1\)
\(\Rightarrow6x^2-\left(6x^2-5x-6\right)-1=0\\ \Rightarrow5x+5=0\\ \Rightarrow x=-1\)