Cho a,b,c là 3 cạnh của 1 tam giác. Chứng minh rằng: 2*( a*b+ b*c+ c*a) > a^2+ b^2+ c^2.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: cm A<0
\(A=\left(a^2-b^2+c^2\right)^2-4a^2c^2\)
\(=\left(a^2-b^2+c^2\right)^2-\left(2ac\right)^2\)
\(=\left(a^2-b^2+c^2+2ac\right)\left(a^2-b^2+c^2-2ac\right)\)
\(=\left[\left(a+c\right)^2-b^2\right]\left[\left(a-c\right)^2-b^2\right]\)
\(=\left(a+c-b\right)\left(a+c+b\right)\left(a-c-b\right)\left(a-c+b\right)\)
Vì a,b,c là độ dài 3 cạnh của 1 tam giác nên: a+b+c > 0
a+c>b => a+c-b > 0
c+b>a=>a-(c+b)=a-c-b < 0
a+b>c => a+b-c > 0
Do đó: (a+c-b)(a+b+c)(a-c-b)(a-c+b) < 0 hay A<0 (đpcm)
Đặt \(P=\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\)
Ta có:
\(a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow\sqrt{a^2+b^2}\ge\dfrac{\sqrt{2}}{2}\left(a+b\right)\)
Tương tự và cộng lại ta được BĐT bên trái
Dấu "=" xảy ra khi \(a=b=c\)
Bên phải:
Áp dụng BĐT Bunhiacopxki:
\(P^2\le3\left(a^2+b^2+b^2+c^2+c^2+a^2\right)=6\left(a^2+b^2+c^2\right)\)
Mặt khác do a;b;c là 3 cạnh của 1 tam giác:
\(\Rightarrow\left\{{}\begin{matrix}a+b>c\\a+c>b\\b+c>a\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}ac+bc>c^2\\ab+bc>b^2\\ab+ac>c^2\end{matrix}\right.\)
\(\Rightarrow a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)
\(\Rightarrow3\left(a^2+b^2+c^2\right)< 6\left(ab+bc+ca\right)\)
\(\Rightarrow P^2\le3\left(a^2+b^2+c^2\right)+3\left(a^2+b^2+c^2\right)< 3\left(a^2+b^2+c^2\right)+6\left(ab+bc+ca\right)\)
\(\Rightarrow P^2< 3\left(a+b+c\right)^2\Rightarrow P< \sqrt{3}\left(a+b+c\right)\)
Do a;b;c là 3 cạnh của 1 tam giác nên: \(\left\{{}\begin{matrix}a+b-c>0\\a+c-b>0\\b+c-a>0\end{matrix}\right.\)
BĐT đã cho tương đương:
\(\dfrac{a^2+2bc}{b^2+c^2}-1+\dfrac{b^2+2ac}{a^2+c^2}-1+\dfrac{c^2+2ab}{a^2+b^2}-1>0\)
\(\Leftrightarrow\dfrac{a^2-\left(b^2-2bc+c^2\right)}{b^2+c^2}+\dfrac{b^2-\left(a^2-2ac+c^2\right)}{a^2+c^2}+\dfrac{c^2-\left(a^2-2ab+b^2\right)}{a^2+b^2}>0\)
\(\Leftrightarrow\dfrac{a^2-\left(b-c\right)^2}{b^2+c^2}+\dfrac{b^2-\left(a-c\right)^2}{a^2+c^2}+\dfrac{c^2-\left(a-b\right)^2}{a^2+b^2}>0\)
\(\Leftrightarrow\dfrac{\left(a+c-b\right)\left(a+b-c\right)}{b^2+c^2}+\dfrac{\left(a+b-c\right)\left(b+c-a\right)}{a^2+c^2}+\dfrac{\left(b+c-a\right)\left(a+c-b\right)}{a^2+b^2}>0\) (luôn đúng)
Vậy BĐT đã cho đúng
Vì a,b,c là ba cạnh của tam giác nên \(\begin{cases}a+b>c\\b+c>a\\a+c>b\end{cases}\) \(\Rightarrow\begin{cases}a+b-c>0\\b+c-a>0\\c+a-b>0\end{cases}\)
do đó các số \(\frac{a^2}{b+c-a},\frac{b^2}{a+c-b},\frac{c^2}{a+b-c}\) là các số dương.
Áp dụng bđt \(\frac{x^2}{m}+\frac{y^2}{n}+\frac{z^2}{p}\ge\frac{\left(x+y+z\right)^2}{m+n+p}\) được
\(\frac{a^2}{b+c-a}+\frac{b^2}{a+c-b}+\frac{c^2}{a+b-c}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)-\left(a+b+c\right)}=\frac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\)
Áp dụng bất đẳng thức tam giác:
\(a+b>c\Rightarrow ac+bc>c^2\)(vì c > 0)
\(b+c>a\Rightarrow ab+ac>a^2\)(vì a > 0)
\(c+a>b\Rightarrow bc+ab>b^2\)(do b > 0)
Do đó: \(2\left(ab+bc+ac\right)>a^2+b^2+c^2\)
\(\)