K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2017

x+6=y(x-1) => \(y=\frac{x+6}{x-1}=\frac{x-1+7}{x-1}=1+\frac{7}{x-1}.\)

Để y là số tự nhiên => 7 phải chia hết cho x-1 (x khác 1)

=> x-1 thuộc (1; 7)

+/ x-1=1 => x=2, y=8 (nhận)

+/ x-1=7 => x=8, y=2

Đáp số: Các cặp (x, y) là: (2; 8) và (8; 2)

19 tháng 9 2021

x + 6 = y . ( x - 1 )

=> x + 6 chia hết x - 1

=> x-1+7 chia hết cho x - 1

Vì x - 1 chia hết cho x - 1 nên 7 sẽ chia hết cho x - 1

Mà x thuộc N => x - 1 lớn hơn hoặc bằng - 1

=> x - 1 thuộc ( - 1 ; 1 ; 7 )

=> x thuộc ( 0 , 2 , 7 )
X = 0  thì  y = ( 0 + 6 ) : ( 0 - 1 ) = - 6 ( loại )

X = 2 thì y = 8 ( chọn ) áp dụng cách trên

X = 8 thì y = 2( chọn ) áp dụng cách trên 

Vậy x = 2 thì y = 8 hay

       x = 8 thì y =2

PTHĐGĐ là:

x^2-(2m+1)x+m^2+m-6=0

Δ=(2m+1)^2-4(m^2+m-6)

=4m^2+4m+1-4m^2-4m+24

=25>0

=>Phương trình luôn có hai nghiệm phân biệt

\(\left|x_1^2-x_2^2\right|=50\)

\(\Leftrightarrow\left|\left(2m+1\right)\right|\cdot\sqrt{\left(2m+1\right)^2-4\left(m^2+m-6\right)}=50\)

\(\Leftrightarrow\left|2m+1\right|\cdot5=50\)

=>|2m+1|=10

=>m=9/2 hoặc m=-11/2

9 tháng 4 2022

Phương trình hoành độ giao điểm: 

x2 = 2x - m

<=> x2 - 2x + m = 0

Để (d) cắt (P) tại 2 điểm phân biệt thì \(\Delta>0\)

<=> (-1)2 - m > 0

<=> 1 - m > 0

<=> m < 1

Ta có: y1 = x12  

          y2 = x22 

y1 + y2 + x12x22 = 6(x1 + x2)

<=> x12 + x22 + x12x22 = 6(x1 + x2)

<=> (x1 + x2)- 2x1x2 + (x1x2)2 = 6(x1 + x2)

Theo viet, ta có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2\\x_1x_2=\frac{c}{a}=m\end{cases}}\)

<=> 22 - 2m + m2 = 6.2

<=> 4 - 2m + m2 = 12

<=> 4 - 2m + m2 - 12 = 0

<=> m2 - 2m - 8 = 0

<=> m = 4 (ktm) hoặc m = -2 (tm)

=> m = -2

27 tháng 4 2023

- Phương trình hoành độ giao điểm của (P) và (d'):

\(-x^2=mx-4\Leftrightarrow x^2+mx-4=0\left(1\right)\)

\(a=1;b=m;c=-4\)

\(\Delta=b^2-4ac=m^2-4.\left(1\right).\left(-4\right)=m^2+16>0\)

Vì \(\Delta>0\) nên (P) và (d) luôn cắt nhau tại hai điểm phân biệt có hoành độ x1, x2.

Theo định lí Viete cho phương trình (1) ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=-\dfrac{m}{1}=-m\\x_1x_2=\dfrac{c}{a}=\dfrac{-4}{1}=-4\end{matrix}\right.\)
Ta có: \(\left(x_1-x_2\right)^2-\left(x_1+x_2\right)=18\)

\(\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)=18\)

\(\Rightarrow\left(-m\right)^2-2.\left(-4\right)-\left(-m\right)-18=0\)

\(\Leftrightarrow m^2+m-12=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=4\\m=-3\end{matrix}\right.\)

Vậy m=4 hay m=-3.

29 tháng 1 2021

Phương trình hoành độ giao điểm:

\(x^2-\left(2m+1\right)x+m^2+m-6=0\left(1\right)\)

Ta có:

\(\Delta=\left(2m+1\right)^2-4\left(m^2+m-6\right)=25>0\forall m\)

\(\Rightarrow\) Phương trình (1) luôn có hai nghiệm phân biệt.

Theo định lí Vi-et \(\left\{{}\begin{matrix}x_1+x_2=2m+1\\x_1x_2=m^2+m-6\end{matrix}\right.\)

\(\Rightarrow\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2=\left(2m+1\right)^2-4\left(m^2+m-6\right)=25\)

\(\Rightarrow\left|x_1-x_2\right|=5\)

Lại có:

\(x_1^2+x_2^2+x_1x_2=\left(x_1+x_2\right)^2-x_1x_2=\left(2m+1\right)^2-\left(m^2+m-6\right)=3m^2+3m+7\)

Khi đó \(\left|x_1^3-x_2^3\right|=50\)

\(\Leftrightarrow\left|x_1-x_2\right|\left(x_1^2+x_2^2+x_1x_2\right)=50\)

\(\Leftrightarrow5\left(3m^2+3m+7\right)=50\)

\(\Leftrightarrow m^2+m-1=0\)

\(\Leftrightarrow m=\dfrac{-1\pm\sqrt{5}}{2}\)

30 tháng 1 2021

Cảm ơn Hồng Phúc CTV 

yeuyeuyeu

NV
27 tháng 2 2023

Em kiểm tra lại đề, đề bài sai

Ví dụ với \(m=0\) thì (d) là \(y=2x-3\), khi đó  pt hoành độ giao điểm (P) và (d) là \(x^2=2x-3\Leftrightarrow x^2-2x+3=0\) vô nghiệm nên (d) và (P) ko có điểm chung

 

PTHĐGĐ là:

x^2+mx-2=0

a=1; b=-m; c=-2

Vì a*c<0 nên (P) luôn cắt (d) tại hai điểm phân biệt

\(x_1^2\cdot x_2+x_1\cdot x_2^2=2020\)

=>\(x_1x_2\left(x_1+x_2\right)=2020\)

=>-m*(-2)=2020

=>2m=2020

=>m=1010

a: Khi m=-5 thì y=2(-5+1)x-(-5)+4

=>y=-8x+9

PTHĐGĐ là:

x^2+8x-9=0

=>(x+9)(x-1)=0

=>x=1 hoặc x=-9

=>y=1 hoặc y=81

b: \(A=\left|x_1-x_2\right|=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}\)

\(=\sqrt{\left(2m+2\right)^2-4\left(m-4\right)}\)

\(=\sqrt{4m^2+8m+4-4m+16}\)

\(=\sqrt{4m^2+4m+20}\)

\(=\sqrt{\left(2m+1\right)^2+19}>=\sqrt{19}\)

Dấu = xảy ra khi m=-1/2