Cho S=\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2011}-\frac{1}{2012}+\frac{1}{2013}\)
P=\(\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2012}+\frac{1}{2013}\)
Tinh \(\left(S-P\right)^{2013}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Biển Cửa Lò, chùa Thiên mụ, núi Ngũ Hành Sơn, chùa Cầu Hội An, kinh thành Huế, đèo Hải Vân
🐼🐼🐼
Ta có:
\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}+\frac{1}{2013}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+...+\frac{1}{2012}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}+\frac{1}{2013}-1-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}-...-\frac{1}{1006}\)
\(=\frac{1}{1007}+\frac{1}{1008}+\frac{1}{1009}+...+\frac{1}{2012}+\frac{1}{2013}\left(1\right)\)
Mà \(P=\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2012}+\frac{1}{2013}\left(2\right)\)
Từ (1) và (2)\(\Rightarrow S=P\Rightarrow\left(S-P\right)^{2013}=0^{2013}=0\)
Vậy...
\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{2011}-\frac{1}{2012}+\frac{1}{2013}\)
\(=\left(1+\frac{1}{3}+......+\frac{1}{2013}\right)-\left(\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{2012}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{2013}\right)-\left(\frac{1}{2}+\frac{1}{4}+....+\frac{1}{2012}\right)-\left(\frac{1}{2}+\frac{1}{4}+....+\frac{1}{2012}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{2013}\right)-2\left(\frac{1}{2}+\frac{1}{4}+.......+\frac{1}{2012}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{2013}\right)-\left(1+\frac{1}{2}+........+\frac{1}{1006}\right)\)
\(=\frac{1}{1007}+\frac{1}{1008}+......+\frac{1}{2013}\)
\(=P\)
\(\Leftrightarrow S-P=0\)
\(\Leftrightarrow\left(S-P\right)^{2013}=0\)
Mọi người tk mình đi mình đang bị âm nè!!!!!!
Ai tk mình mình tk lại nha !!!
\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2011}-\frac{1}{2012}+\frac{1}{2013}\)
\(S=\left(1+\frac{1}{3}+\frac{1}{5}+.....+\frac{1}{2011}+\frac{1}{2013}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2012}\right)\)
\(S=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{2011}+\frac{1}{2012}+\frac{1}{2013}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2012}\right)\)
\(S=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+..+\frac{1}{2011}+\frac{1}{2012}+\frac{1}{2013}-\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{1006}\right)\)
\(S=\frac{1}{1007}+\frac{1}{1008}+.....+\frac{1}{2012}+\frac{1}{2013}=P\)
=>S-P=0
=>(S-P)2016=0
\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2011}-\frac{1}{2012}+\frac{1}{2013}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2013}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2012}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}+\frac{1}{2013}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2012}\right)\)
\(=1+\frac{1}{2}+...+\frac{1}{2012}+\frac{1}{2013}-\left(1+\frac{1}{2}+...+\frac{1}{1006}\right)\)
\(=\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2012}+\frac{1}{2013}\)
=> S = P => (S - P)2013 = 0
\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{2011}-\frac{1}{2012}+\frac{1}{2013}\)
\(\Rightarrow S=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2012}\right)\)
\(\Rightarrow S=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{1006}\)
\(\Rightarrow S=\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2012}+\frac{1}{2013}\)\(=P\)
\(\Rightarrow\left(S-P\right)^{2013}=0^{2013}=0\)
Tík cho mik nha!
\(P=\frac{1}{1007}+\frac{1}{1008}+.....+\frac{1}{2012}+\frac{1}{2013}\)
\(P=\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{1006}+\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2012}+\frac{1}{2013}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1006}\right)\)
\(P=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1006}+\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2012}+\frac{1}{2013}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2012}\right)\)
\(\)
\(P=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...-\frac{1}{2012}+\frac{1}{2013}=S\)
Vậy (S-P)2013=0
\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+.....+\frac{1}{2011}-\frac{1}{2012}+\frac{1}{2013}\)
\(S=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{6}+.....+\frac{1}{2011}+\frac{1}{2012}+\frac{1}{2013}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}.....+\frac{1}{2012}\right)\)
\(S=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{2011}+\frac{1}{2012}+\frac{1}{2013}-1-\frac{1}{2}-\frac{1}{3}-........-\frac{1}{1006}\)
\(S=\frac{1}{1007}+\frac{1}{1008}+.......+\frac{1}{2011}+\frac{1}{2012}+\frac{1}{2013}\)
\(\Rightarrow\left(S-P\right)^2=\left(\frac{1}{1007}+\frac{1}{1008}+....+\frac{1}{2012}+\frac{1}{2013}-\frac{1}{1007}-\frac{1}{1008}-....-\frac{1}{2012}-\frac{1}{2013}\right)^2\)
\(\Rightarrow\left(S-P\right)^2=0\)
Vậy \(\left(S-P\right)^2=0\)
\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2011}-\frac{1}{2012}+\frac{1}{2013}\)
\(S=\left(1+\frac{1}{3}+...+\frac{1}{2013}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2012}\right)+\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2012}\right)\)
\(S=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}+\frac{1}{2013}\right)-\left(1+\frac{1}{2}+...+\frac{1}{1006}\right)\)
\(S=\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2013}\)
\(\Rightarrow S-P=0\)
\(\Rightarrow\left(S-P\right)^{2013}=0\)