Cho số nguyên tố p và số tự nhiên n thỏa 2p+1=n3.
Tìm m và p
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,
Đặt A = n3 - n2 + n - 1
Ta có A = n2(n - 1) + (n - 1) = (n - 1)(n2 + 1)
Vì A nguyên tố nên A chỉ có 2 Ư. Ư thứ 1 là 1 còn Ư thứ 2 nguyên tố nên ta suy ra 2 trường hợp :
TH1 : n - 1 = 1 và n2 + 1 nguyên tố
⇒
n = 2 và n2 + 1 = 5 nguyên tố (thỏa)
TH2 : n2 + 1 = 1 và n - 1 nguyên tố
⇒
n = 0 và n - 1 = - 1( ko thỏa)
Vậy n = 2
2 ,
Xột số A = (2n – 1)2n(2n + 1)
A là tích của 3 số tự nhiên liờn tiệp nên A ⋮ 3
Mặt khỏc 2n – 1 là số nguyên tố ( theo giả thiết )
2n không chia hết cho 3
Vậy 2n + 1 phải chia hết cho 3 ⇒ 2n + 1 là hợp số.
Lời giải:
Nếu $p$ chẵn thì $p=2$. Khi đó $a^3=2.2+1=5$ (vô lý- loại)
Nếu $p$ lẻ thì:
$a^3=2p+1$
$a^3-1=2p$
$(a-1)(a^2+a+1)=2p$
Vì $a^3=2p+1$ lẻ nên $a$ lẻ. Do đó $a-1$ chẵn.
Mà $a^2+a+1=a(a+1)+1$ có $a(a+1)$ chẵn nên $a^2+a+1=a(a+1)+1$ lẻ.
Do đó ta có 2 TH sau:
TH1: $a-1=2, a^2+a+1=p$
$\Rightarrow a=3; p=13$ (tm)
TH2: $a-1=2p, a^2+a+1=1$
$\Rightarrow a(a+1)=0\Rightarrow a=0$
$\Rightarrow 2p+1=a=0$ (vô lý) - loại
Vâ $a=3; p=13$
b) +) Nếu p = 3k + 1 (k thuộc N)=> 2p2 + 1 = 2.(3k + 1)2 + 1 = 2.(9k2 + 6k + 1) + 1 = 18k2 + 12k + 2 + 1 = 18k2 + 12k + 3 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)
+) Nếu p = 3k + 2 (k thuộc N) => 2p2 + 1 = 2.(3k + 2)2 + 1 = 2.(9k2 + 12k + 4) + 1 = 18k2 + 24k + 8 + 1 = 18k2 + 24k + 9 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)
Vậy p = 3k, mà p là số nguyên tố => k = 1 => p = 3
a) +) Nếu p = 1 => p + 1 = 2; p + 2 = 3; p + 4 = 5 là số nguyên tố
+) Nếu p > 1 :
p chẵn => p = 2k => p + 2= 2k + 2 chia hết cho 2 => p+ 2 là hợp số => loại
p lẻ => p = 2k + 1 => p + 1 = 2k + 2 chia hết cho 2 => p+1 là hợp số => loại
Vậy p = 1
c) p = 2 => p + 10 = 12 là hợp số => loại
p = 3 => p + 10 = 13; p+ 14 = 17 đều là số nguyên tố => p = 3 thỏa mãn
Nếu p > 3 , p có thể có dạng
+ p = 3k + 1 => p + 14 = 3k + 15 chia hết cho 3 => loại p = 3k + 1
+ p = 3k + 2 => p + 10 = 3k + 12 là hợp số => loại p = 3k + 2
Vậy p = 3
`P=n^3-n^2+n-1`
`=n^2(n-1)+(n-1)`
`=(n-1)(n^2+1)`
Vì n là stn thì p là snt khi
`n-1=1=>n=2`
Vậy n=2
Bài 1:
ƯCLN(a;b)=15
=>a⋮15; b⋮15
\(a\cdot b=ƯCLN\left(a;b\right)\cdot BCN\mathbb{N}\left(a;b\right)\)
=>\(a\cdot b=15\cdot3000=45000\)
mà a⋮15; b⋮15
nên (a;b)∈{(15;3000);(3000;15);(30;1500);(1500;30);(60;750);(750;60);(75;600);(600;75);(120;375);(375;120);(150;300);(300;150)}
mà ƯCLN(a;b)=15
nên (a;b)∈{(15;3000);(3000;15);(120;375);(375;120)}
Bài 2:
Sửa đề: Tìm số nguyên tố P
a: TH1: P=2
\(2p^2+1=2\cdot2^2+1=2\cdot4+1=9\) là hợp số
=>Nhận
TH2: p=3
\(2p^2+1=2\cdot3^2+1=2\cdot9+1=19\) là số nguyên tố
=>Loại
TH3: p=3k+1
\(2p^2+1=2\cdot\left(3k+1\right)^2+1\)
\(=2\left(9k^2+6k+1\right)+1=18k^2+12k+2+1\)
\(=18k^2+12k+3=3\left(6k^2+4k+1\right)\) ⋮3
=>\(2p^2+1\) là hợp số
TH4: p=3k+2
\(2p^2+1=2\left(3k+2\right)^2+1\)
\(=2\left(9k^2+12k+4\right)+1=18k^2+24k+8+1\)
\(=18k^2+24k+9=3\left(3k^2+6k+3\right)\) ⋮3
=>\(2p^2+1\) là hợp số
Vậy: p=2 hoặc p là số nguyên tố lớn hơn 3
b: TH1: p=3
p+4=3+4=7; p+8=3+8=11
=>Nhận
TH2: p=3k+1
\(p+8=3k+1+8=3k+9=3\left(k+3\right)\) ⋮3
=>p+8 là hợp số
=>Loại
TH3: p=3k+2
\(p+4=3k+2+4=3k+6=3\left(k+2\right)\) ⋮3
=>p+4 là hợp số
=>Loại