K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2019

1 + 22 + 23 + ... + 22005

Gọi dãy số trên là A

A = \(1+2^2+2^3+....+2^{2005}\)

A =\(2^0+2^2+2^3+....+2^{2005}\)

A + \(2^1\)=  \(2^0+2^1+2^2+2^3+....+2^{2005}\)

( A + 2 ) x 21\(\left(2^0+2^1+2^2+2^3+....+2^{2005}\right)\times2^1\)

Ax2 + 4 =\(2^1+2^2+2^3+2^4+....+2^{2006}\)

4 + A x 2 - A =\(2^1+2^2+2^3+2^4+....+2^{2006}-\left(1+2^2+2^3+...2^{2005}\right)\)

4 + A = \(2^1+2^2+2^3+2^4+....+2^{2006}-1-2^2-2^3-....-2^{2005}\)

4 + A = \(2^{2006}-1\)

A=\(2^{2006}-1-4\)

A = \(2^{2006}-5\)

Mà \(2^{2006}-5< 2^{2006}\) 

\(\Rightarrow1+2^2+2^3+....+2^{2005}< 2^{2006}\)

14 tháng 10 2023

giúp e với ạ

gấp rút 

ai gửi đầu tiên e tim cho

14 tháng 10 2023

mik bt lm câu 1 thôi nha, bn thông cảm:

a = 2007.2009                              b = 20082

  =(2008 - 1)(2008 + 1)

  = 20082 - 1

Ta có, a = 20082 - 1, b = 20082

mà 20082 - 1 < 20082

=> a < b

14 tháng 5 2023

\(S=\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2005}}\)

\(2.S=2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2005}}\)

\(2.S-S=\left(2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2005}}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2006}}\right)\)

\(S=2-\dfrac{1}{2^{2006}}\)

26 tháng 10 2023

\(A=4+2^2+2^3+...+2^{2006}\)

\(\mathsf{Đặt}:B=2^2+2^3+...+2^{2006}\\2B=2^3+2^4+...+2^{2007}\\2B-B=(2^3+2^4+...+2^{2007})-(2^2+2^3+...+2^{2006})\\B=2^{2007}-2^2\\B=2^{2007}-4\)

Thay \(B=2^{2007}-4\) vào A, ta được:

\(A=4+(2^{2007}-4)\\\Rightarrow A=2^{2007}\)

$\Rightarrow A$ là 1 luỹ thừa của cơ số 2.

Vậy: ...

19 tháng 8 2021

Đặt A=22+23+..+22005
 
2A=23+24+..+22006
suy ra 2A-A=(23+24+..+22006) - (22+23+..+22005)
A=22006-22
suy ra C=4+22006-4
           C=22006    .Là lũy thừa của 2 (đpcm)

 

19 tháng 8 2021

C=4+22+23+...+22005

2C=8+23+24+...+22006

2C-C=(8+23+24+...+22006)-(4+22+23+...+22005)

C=4+22005-22

C=22-22+22005

C=22005(đpcm)

28 tháng 12 2021

giups mình với

 

28 tháng 12 2021

1+2+22+23+......22022>5.2221

7 tháng 5 2021

2A=2*(1+2+22+...+22020)=2+22+...+22021

2A-A=(1+2+22+...+22021)-(1+2+22+...+22020)

A=22021-1<2021

Giải:

A=1+2+22+23+...+22020

2A=2+22+23+24+...+22021

2A-A=(2+22+23+24+...+22021)-(1+2+22+23+...+22020)

A=22021-1

⇒A<22021

Chúc bạn học tốt!

10 tháng 9 2023

S=1+2+22+...+29�=1+2+22+...+29

2S=2(1+2+22+...+210)2�=2(1+2+22+...+210)

2S=2+22+23+...+292�=2+22+23+...+29

2SS=(2+22+23+...+210)(1+2+22+...+29)2�−�=(2+22+23+...+210)−(1+2+22+...+29)

\(S=2^{10}-1=2^2.2^8-1=4.2^8-1

 

HT

11 tháng 9 2023

S=1+2+22+...+29�=1+2+22+...+29

2S=2(1+2+22+...+210)2�=2(1+2+22+...+210)

2S=2+22+23+...+292�=2+22+23+...+29

2SS=(2+22+23+...+210)(1+2+22+...+29)2�−�=(2+22+23+...+210)−(1+2+22+...+29)

\(S=2^{10}-1=2^2.2^8-1=4.2^8-1

Có : \(S=1+2+2^2+2^3+....+2^{99}\)

\(\Rightarrow2S=2+2^2+2^3+....+2^{100}\)

\(\Rightarrow2S-S=\left(2+2^2+2^3+...+2^{100}\right)-\left(1+2+2^2+....+2^{99}\right)\)

\(\Rightarrow S=2^{100}-1< 2^{100}\)

Vậy \(S< 2^{100}\)

 S=1+2+22+23+....+299

⇒2S=2+22+23+....+2100

⇒2S−S=2100-1

S=2100-1

vì 2100 -1<2100

⇒S<2100

 

14 tháng 7 2023

\(S=1+2+2^2+2^3+...+2^9\) 

Đặt \(2S=2+2^2+2^3+2^4+...+2^{10}\) 

\(2S-S=2^{10}-1\) hay \(S=2^{10}-1< 2^{10}\)

\(\Rightarrow\) \(2^{10}=2^2.2^8< 5.2^8\) 

Vậy \(S< 5.2^8\)

\(#Tuyết\)

2S=2+2^2+...+2^10

=>S=2^10-1=1023

5*2^8=256*5=1280

=>S<5*2^8

Sửa đề: \(S=\dfrac{1}{20}+\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{50}\)

Ta có: \(S=\dfrac{1}{20}+\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{50}\)

\(=\dfrac{1}{20}+\left(\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{30}\right)+\left(\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{40}\right)+\left(\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{50}\right)\)

\(\Leftrightarrow S>\dfrac{1}{20}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}=\dfrac{1}{4}+\dfrac{1}{3}+\dfrac{1}{4}\)

\(\Leftrightarrow S>\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{3}{4}\)(đpcm)

29 tháng 6 2021

thank you