Cho tam giác ABC. D là trung điểm của BC, E là trung điểm của BC. Nối DE. Trên tia đối của tia DE lấy điểm K sao cho DK= DE
a) CM: AK// BC
b) I là trung điểm của AE. CM: I là trung điểm của KC
Vẽ hình giúp mình nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tu ve hinh :
xet tamgiac KDA va tamgiac EDB co : DK = DE (gt)
DB = DA do D la trung diem cua AB (gt)
goc KDA = goc BDE (doi dinh)
=> tamgiac KDA = tamgiac EDB (c - g - c)
=> goc KAD = goc DBE (dn) ma 2 goc nay so le trong
=> KA // BC (dh) (1)
b, (1) => goc KAE = goc AEC (soletrong)
xet tamgiac KAI va tamgiac CEI co : goc KIA = goc EIC (doi dinh)
AI = IE do I la trung diem cua AE (gt)
=> tamgiac KAI = tamgiac CEI (g - c - g)
=> KI = IC (dn) ma I nam giua K va C
=> I la trung diem cua KC (dn)
vay_
a) Xét \(\Delta ADK\)và \(\Delta BDE\)có:
AD = BD (gt)
\(\widehat{ADK}=\widehat{BDE}\)
DK = DE (gt)
Suy ra \(\Delta ADK\)\(=\Delta BDE\left(c-g-c\right)\)
\(\Rightarrow\widehat{DAK}=\widehat{DBE}\)(hai góc tương ứng) và AK = BE
Mà 2 góc này ở vị trí so le trong nên \(AK//BC\)(đpcm)
b) Xét \(\Delta EIC\)và \(\Delta AIK\)có:
EI = AI (gt)
\(\widehat{IEC}=\widehat{IAK}\)(\(AK//BC\),so le trong)
EC = AK ( Vì AK = BE mà BE = EC)
Suy ra \(\Delta EIC\)\(=\Delta AIK\left(c-g-c\right)\)
\(\Rightarrow KI=CI\)(hai cạnh tương ứng)
Từ đề bài suy ra DE là đường trung bình của \(\Delta ABC\)
\(\Rightarrow DE//AC\)
CM tương tự được: \(\Delta KIE=\Delta CIA\)
Sao đó c/m \(KIC=180^0\)rồi suy ra I là trung điểm của KC
a) Xét \(\Delta AMB\)và \(\Delta DMC\)có:
MA = MD (gt)
\(\widehat{AMB}=\widehat{DMC}\)(2 góc đối đỉnh)
MB = MC (M là trung điểm của BC)
\(\Rightarrow\Delta AMB=\Delta DMC\left(c.g.c\right)\)
b) Xét \(\Delta AMC\)và \(\Delta DMB\)có:
MA = MD (gt)
\(\widehat{AMC}=\widehat{DMB}\)(2 góc đối đỉnh)
MC = MB (M là trung điểm của BC)
\(\Rightarrow\Delta AMC=\Delta DMB\left(c.g.c\right)\)
\(\Rightarrow\widehat{ACM}=\widehat{DBM}\)(2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong
\(\Rightarrow AC//BD\)
c) Ta có: \(\Delta AMC=\Delta DMB\)(theo b)
=> AC = BD (2 cạnh tương ứng)
Xét \(\Delta DBK\)và \(\Delta ACH\)có:
\(\widehat{BKD}=\widehat{CHA}=90^o\left(gt\right)\)
BD = AC (cmt)
\(\widehat{DBK}=\widehat{ACM}\)(cm b)
\(\Rightarrow\Delta DBK=\Delta ACH\left(CH-GN\right)\)
=> BK = CH (2 cạnh tương ứng)
d) Ta có: \(\Delta AMB=\Delta DMC\)(theo a)
=> AB = CD (2 cạnh tương ứng) (1)
\(\widehat{ABM}=\widehat{DCM}\)(2 góc tương ứng)
Mà 2 góc ở vị trí so le trong => AB // CD (2)
Xét \(\Delta ABI\)và \(\Delta CEI\)có:
AI = CI (I là trung điểm của AC)
\(\widehat{AIB}=\widehat{CIE}\)(2 góc đối đỉnh)
BI = EI (I là trung điểm của BE)
\(\Rightarrow\Delta ABI=\Delta CEI\left(c.g.c\right)\)
\(\Rightarrow AB=CE\)(2 cạnh tương ứng) (3)
\(\widehat{ABI}=\widehat{CEI}\)(2 góc tương ứng)(4)
Mà 2 góc này ở vị trí so le trong
=> AB // CE
Từ (1) và (3) => CD = CE (5)
Từ (2) và (4) => C,D,E thẳng hàng (6)
Từ (5) và (6) => C là trung điểm của DE
sai đầu bài ròi bn êi
sai đầu bài thật đấy