Tìm số nguyên x , y biết :
\(x^2y\)- x + xy = 6
AI GIÚP MÌNH VỚI !!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a )
(x-3).(2y+1)=7
(x-3).(2y+1)= 1.7 = (-1).(-7)
Cứ cho x - 3 = 1 => x= 4
2y + 1 = 7 => y = 3
Tiếp x - 3 = 7 => x = 10
2y + 1 = 1 => y = 0
x-3 = -1 ...
1.tìm các số nguyên x và y sao cho:
(x-3).(2y+1)=7
Vì x;y là số nguyên =>x-3 ; 2y+1 là số nguyên
=>x-3 ; 2y+1 C Ư(7)
ta có bảng:
x-3 | 1 | 7 | -1 | -7 |
2y+1 | 7 | 1 | -7 | -1 |
x | 4 | 10 | 2 | -4 |
y | 3 | 0 | -4 | -1 |
Vậy..............................................................................
2.tìm các số nguyên x và y sao cho:
xy+3x-2y=11
x.(y+3)-2y=11
x.(y+3)-y=11
x.(y+3)-(y+3)=11
(x-1)(y+3)=11
Vì x;y là số nguyên => x-1;y+3 là số nguyên
=> x-1;y+3 Thuộc Ư(11)
Ta có bảng:
x-1 | 1 | 11 | -1 | -11 |
y+3 | 11 | 1 | -11 | -1 |
x | 2 | 12 | 0 | -10 |
y | 8 | -2 | -14 | -4 |
Vậy.......................................................................................
a)x.y=6
=> x.y=6=1.6=2.3=(-1).(-6)=(-2).(-3)=...
Ta có bảng giá trị sau:
x | 1 | 6 | -1 | -6 | 2 | 3 | -2 | -3 |
y | 6 | 1 | -6 | -1 | 3 | 2 | -3 | -2 |
Vậy (x,y) thuộc {(1;6);(6;1);(-1;-6);(-6;-1);(2;3);(3;2);(-2;-3);(-3;-2)}
b)x.(y-1)=-5
=>x.(y-1)=-5=1.(-5)=5.(-1)
Ta có bảng giá trị sau:
y-1 | -5 | 1 | -1 | 5 |
x | 1 | -5 | 5 | -1 |
y | -4 | 2 | 0 | 6 |
Bạn tự ghi kết quả tương tự như câu a nhé
c)(y-1).(x-2)=7
=>(y-1).(x-2)=7=1.7=(-1).(-7)=...
Ta có bảng giá trị sau:
y-1 | 1 | 7 | -1 | -7 |
x-2 | 7 | 1 | -7 | -1 |
x | 9 | 3 | -5 | -3 |
y | 2 | 8 | 0 | -6 |
Đáp án tự ghi nhé
d)xy+3x-2y=11
xy+3x-2y-6=5
x.(y+3)-2.(y+3)=5
=>(y+3).(x-2)=5
Ta có bảng giá trị sau:
y+3 | 1 | 5 | -1 | -5 |
x-2 | 5 | 1 | -5 | -1 |
x | 7 | 3 | -3 | 1 |
y | -2 | 2 | -4 | 8 |
Bạn làm tương tự câu d nhé,mình mệt lắm rồi.Nếu ko làm được thì bạn hỏi người khác nhé
ĐỪNG QUÊN CHO MÌNH 1 K ĐÚNG
a) vì x.y =6 mà x; y thuộc Z
nên
bảng giá trị
| |||||||||||||||||||
x(y-1)+2(y-1)=1
(y-1).((x+2)=1
y-1=1 hoặc x+2=1=>y=2 hoặc x=-1
y-1=-1 hoặc x+2=-1=>y=0 hoặc x=-3
Vậy: (x;y)= (-1;2) ; (-3;0)
xy−x+2y=3xy−x+2y=3
xy−x+2y−3=0xy−x+2y−3=0
xy−x+2y−3+1=1xy−x+2y−3+1=1
x(y−1)+2(y−1)=1x(y−1)+2(y−1)=1
(y−1).(x+2)=1(y−1).(x+2)=1
⇒[y−1=1;−1x+2=1;−1⇒[y−1=1;−1x+2=1;−1
⇒\(\orbr{\begin{cases}\\\end{cases}}\)y−1=1⇒y=1+1=2x+2=1⇒x=1−2=−1⇒[y−1=1⇒y=1+1=2x+2=1⇒x=1−2=−1
⇒\(\orbr{\begin{cases}\\\end{cases}}\)y−1=−1⇒y=−1+1=0x+2=−1⇒x=−1−2=−3⇒[y−1=−1⇒y=−1+1=0x+2=−1⇒x=−1−2=−3
Vậy y={2;0},x={−1;−3}
\(xy-x+2y=3\)
\(\Rightarrow x\left(y-1\right)+2y-2=2+3\)
\(\Rightarrow x\left(y-1\right)+2\left(y-1\right)=5\)
\(\Rightarrow\left(x+2\right)\left(y-1\right)=5\)
Vì x;y thuộc Z \(\Rightarrow\left(x+2\right);\left(y-1\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Xét bảng
x+2 | 1 | -1 | 5 | -5 |
y-1 | 5 | -5 | 1 | -1 |
x | 1 | -3 | 3 | -7 |
y | 6 | -4 | 2 | 0 |
Vậy..............
xy + 2x + 2y = - 16
x.( y + 2 ) + 2.( y + 2 ) - 4 = - 16
( y + 2 ).( x + 2 ) = - 12
=> ( y + 2 ) ; ( x + 2 ) \(\inƯ\left(-12\right)=\left\{-1;1;-2;2;-3;3;-4;4;-6;6;-12;12\right\}\)
Ta có bảng :
y + 2 - 1 1 - 2 2 - 3 3 - 4 4 - 6 6 -12 12
x + 2 12 -12 6 -6 4 -4 3 - 3 2 - 2 1 - 1
y - 3 -1 -4 0 -5 1 -6 2 -8 4 -14 10
x 10 - 14 4 -8 2 -6 1 -5 0 -4 -1 -3
Vậy ...
x
Trước hết ta thấy rằng nếu có một trong hai số x,y chẵn thì xy chẵn còn 2x+2y+1 là lẻ, do đó 2x+2y+1 không thể chia hết cho xy.
phân thích được thành (x+2)(y+2)=9
ở đây giải pt nghiêm nguyên là được ( 9=1x9=...)
#Học-tốt
tìm x, y nguyên biết:
xy + 2x + 2y = 9
x.(y+2)+2y=9
x.(y+2)+y=9
x.(y+2)+(y+2)=9
(x+1)(y+2)=9
Vì x;y là số nguyên => x+1 và y+2 là số nguyên
=> \(x+1;y+2\inƯ\left(9\right)\)
Ta có bảng:
x+1 | 1 | 9 | 3 | 3 | -1 | -9 | -3 | -3 |
y+2 | 9 | 1 | 3 | 3 | -9 | -1 | -3 | -3 |
x | 0 | 8 | 2 | 2 | -2 | -10 | -4 | -4 |
y | 7 | -1 | 1 | 1 | -11 | -3 | -5 | -5 |
Vậy.....................................................................................
\(x^2y-x+xy=6\)
\(x\left(xy-1\right)+\left(xy-1\right)=6-1\)
\(\left(x+1\right)\left(xy-1\right)=5\)
Khi \(\hept{\begin{cases}x+1=1\\xy-1=5\end{cases}\Rightarrow\hept{\begin{cases}x=0\\0-1=5\left(\text{vô lý}\right)\end{cases}}}\)
Khi \(\hept{\begin{cases}x+1=-1\\xy-1=-5\end{cases}\Rightarrow\hept{\begin{cases}x=-2\\y=2\end{cases}}}\)
Khi \(\hept{\begin{cases}x+1=5\\xy-1=1\end{cases}\Rightarrow\hept{\begin{cases}x=4\\y=\frac{1}{2}\notinℤ\end{cases}}}\)
Khi \(\hept{\begin{cases}x+1=-5\\xy-1=-1\end{cases}\Rightarrow\hept{\begin{cases}x=-6\\y=0\end{cases}}}\)
Vậy \(\left(x;y\right)\in\left\{\left(-6;0\right);\left(-2;2\right)\right\}\)
\(x^2y-x+xy=6\)
\(\Rightarrow xy\left(x+1\right)-x-1=5\)
\(\Rightarrow\left(xy-1\right)\left(x+1\right)=5\)
Lập bảng là ra