K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2019

Ta chứng minh 1 bđt phụ:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\) (với a;b;c>0)
Thật vậy,ta có: \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(a+b+c\right)=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\)

Mà: \(\frac{a}{b}+\frac{b}{a}\ge2;\frac{b}{c}+\frac{c}{b}\ge2;\frac{c}{a}+\frac{a}{c}\ge2\left(Cauchy\right)\)nên ta có đpcm 

Vậy bđt đc chứng minh
Áp dụng:

\(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge\frac{9}{a^2+b^2+c^2+2ab+2bc+2ac}=\frac{9}{\left(a+b+c\right)^2}\ge9\)

Dấu bằng khi a=b=c=1/3

12 tháng 8 2016

Đề bài phải cho \(a+b+c\le1\) để xảy ra dấu "=" ở điều phải chứng minh.

Áp dụng bđt \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)

với \(x=a^2+2bc,y=b^2+2ac,z=c^2+2ab\)  được  :

\(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge\frac{9}{a^2+b^2+c^2+2ab+bc+ac}\)

\(\Rightarrow\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge\frac{9}{\left(a+b+c\right)^2}\ge9\)(đpcm)

12 tháng 8 2016

Dễ chứng minh : (a + b + c)(1/a + 1/b + 1/c) >= 9 
Áp dụng điều đó : 
1/(a^2 + 2bc)+ 1/(b^2 + 2ac) + 1/(c^2 + 2ab) >= 9/(a^2 + b^2 + c^2 + 2ab + 2ac + 2bc) = 9/(a + b + c)^2 >= 9/1^2 = 9 (đpcm)

6 tháng 12 2019

Đặt \(m=a^2+bc\);\(n=b^2+2ca\);\(p=c^2+2ab\)

Lúc đó: \(m+n+p=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

\(=\left(a+b+c\right)^2< 1\)(vì a + b + c < 1 )

\(BĐT\Leftrightarrow\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\ge9\)và m + n + p < 1 ; m,n,p > 0 

Áp dụng BĐT Cô -si cho 3 số không âm:

\(m+n+p\ge3\sqrt[3]{mnp}\)

và \(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\ge3\sqrt[3]{\frac{1}{mnp}}\)

\(\Rightarrow\left(m+n+p\right)\left(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\right)\ge9\)

Mà m + n + p < 1 nên \(\left(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\right)\ge9\)

hay \(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ca}+\frac{1}{c^2+2ab}\ge9\)

NV
7 tháng 3 2020

\(VT\ge\frac{9}{a^2+2bc+b^2+2ac+c^2+2ab}=\frac{9}{\left(a+b+c\right)^2}\ge\frac{9}{1}=9\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)

9 tháng 4 2017

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(VT=\dfrac{1}{a^2+2bc}+\dfrac{1}{b^2+2ac}+\dfrac{1}{c^2+2ab}\)

\(\ge\dfrac{\left(1+1+1\right)^2}{a^2+2bc+b^2+2ac+c^2+2ab}\)

\(=\dfrac{3^2}{\left(a+b+c\right)^2}=\dfrac{9}{\left(a+b+c\right)^2}=9\left(a+b+c\le1\right)\)

Đẳng thức xảy ra khi \(a=b=c=\dfrac{1}{3}\)

21 tháng 8 2015

Lần sau em viết đề cẩn thận hơn nhé, dấu lớn hơn đúng ra phải là lớn hơn hoặc bằng và không có ẩn d.

Bài này sử dụng bất đẳng thức Cauchy-Schwartz thôi (Nếu bạn chưa quen, thì xem lại phát biểu và chứng minh ở đây: http://olm.vn/hoi-dap/question/174274.html ).

Ta có \(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ca}+\frac{c^2}{c^2+2ab}\ge\frac{\left(a+b+c\right)^2}{\left(a^2+2bc\right)+\left(b^2+2ca\right)+\left(c^2+2ab\right)}=1.\)

Dấu bằng xảy ra khi và chỉ khi \(a=b=c.\)

18 tháng 8 2019

Cauchy Schwars 

\(M\ge\frac{\left(1+1+1\right)^2}{\left(a+b+c\right)^2}=\frac{9}{\left(a+b+c\right)^2}\ge9\Rightarrow M_{min}=9\Leftrightarrow a=b=c=\frac{1}{3}\)

18 tháng 8 2019

\(M=\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge\frac{9}{\left(a+b+c\right)^2}\ge9\)

Dau '=' xay ra khi \(a=b=c=\frac{1}{3}\)

Vay \(M_{min}=9\)