Tìm ƯCLN(2n-1,9n+4) với n thuộc N
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Gọi d là UCLN(2n+1;3n+2)
Ta có:
3n+2 chia hết cho d
2n+1 chia hết cho d
=> 2(3n+2)-3(n+1)=1 chia hết cho d
=> d E {-1;1}
=> 2n+1 và 3n+2 luôn nguyên tố cùng nhau
=> BCNN(2n+1,3n+2)=(2n+1)(3n+2) (ĐPCM)
b, Gọi a là UCLN(2n+1;9n+6)
=> 2n+1 chia hết cho a
9n+6 chia hết cho a
=> 2(9n+6)-9(2n+1) chia hết cho a
=> 3 chia hết cho a=> a E {3;-3;1;-1}
Ta có: 9n+6 thì chia hết cho 3 nhưng 2n+1 thì chưa chắc
2n+1 chia hết cho 3 <=> n=3k+1 (k E N)
Vậy: UCLN(2n+1;9n+6)=3 <=> n=3k+1
còn nếu n khác: 3k+1
=> UCLN(2n+1;9n+6)=1
gọi d là UCLN(2n-1;9n+4)
<=>9(2n-1);2(9n+4) chia hết d
=>18n-1;18n+4 chia hết d
=>1 chia hết d
=>ƯCLN(2n-1;9n+4) là 1 vì n thuộc N
Gọi ƯCLN(2n-1;9n+4)=d
Ta có: 2n-1 chia hết cho d
=>9(2n-1) chia hết cho d
18n-9 chia hết cho d
có 9n+4 chia hết cho d
=>2(9n+4) chia hết cho d
18n+8 chia hết cho d
=>18n-9-(18n+8) chia hết cho d
=>1 chia hết cho d hay d=1
Vậy ƯCLN(2n-1;9n+4)=1
Gọi d = ƯCLN(2n + 3; 3n + 4)
⇒ (2n + 3) ⋮ d và (3n + 4) ⋮ d
*) (2n + 3) ⋮ d
⇒ 3(2n + 3) ⋮ d
⇒ (6n + 9) ⋮ d (1)
*) (3n + 4) ⋮ d
⇒ 2(3n + 4) ⋮ d
⇒ (6n + 8) ⋮ d (2)
Từ (1) và (2) suy ra:
(6n + 9 - 6n - 8) ⋮ d
⇒ 1 ⋮ d
⇒ d = 1
Vậy ƯCLN(2n + 3; 3n + 4) = 1
Gọi UCLN của ( 2n + 1 , 3n + 4 ) là d ( d thuộc N*)
=> 2n + 1 chia hết cho d => 3 x ( 2n + 1 ) chia hết cho d hay 6n + 3 chia hết cho d
=>3n + 4 chia hết cho d => 2 x ( 3n + 4 ) chia hết cho d hay 6n + 8 chia hết cho d
=> ( 6n + 8 ) - ( 6n + 3 ) = 5 chia hết cho d => d thuộc Ư của 5
Mà Ư của 5 là 1 và 5
Vậy nếu 2 số 2n + 1 và 3n + 4 nguyên tố cùng nhau thì UCLN của nó bằng 1
Vậy nếu 2 số 2n + 1 và 3n + 4 không nguyên tố cùng nhau thì UCLN của nó bằng 5
1) (2n-1;9n+4)=(2n-1;n+8)=(17;n+8)=1 hoặc 17
2) (7n+3;8n-1) =(7n+3;n-4)=(31;n-4)=1 hoặc 31
Gọi d ∈ ƯC (2n - 1, 9n + 4) ⇒ 2(9n + 4) - 9(2n - 1) ⋮ d ⇒ (18n + 8) - (18n - 9) ⋮ 17 ⇒ 17 ⋮ d ⇒ d ∈ {1, 17}.
Ta có 2n - 1 ⋮ 17 ⇔ 2n - 18 ⋮ 17 ⇔ 2(n - 9) ⋮ 17.
Vì ƯCLN(2 ; 17) = 1 ⇒ n - 9 ⋮ 17 ⇔ n - 9 = 17k ⇔ n = 17k + 9 (k ∈ N)
- Nếu n = 17k + 9 thì 2n - 1 = 2 . (17k + 9) - 1 = 34k - 17 = 17 . (2k + 1)⋮ 17.
và 9n + 4 = 9 . (17k + 9) + 4 = 153k + 85 = 17 . (9 + 5) ⋮ 17.
Do đó ƯCLN(2n - 2 ; 9n + 4) = 17
- Nếu n ≠ 17k + 9 thì 2n - 1 không chia hết cho 17, do đó ƯCLN(2n - 1 ; 9n + 4) = 1
Vậy ƯCLN(2n - 1 ; 9n + 4) = 17