K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2019

a, Xét x=0 không phải nghiệm pt chia 2 vế cho x, đặt t= x+1/x từ đó suy ra phương trình ẩn t, giải ra ta được các phương trình ẩn x rồi ra x. 

b, Tách đa thức thành tích của đơn thức (x+1) và 1 đa thức bậc 4 rồi làm như câu a,. 

29 tháng 1 2019

\(2x^4+3x^3-x^2+3x+2=0\)

\(\Leftrightarrow2x^4+4x^3-x^3-2x^2+x^2+2x+x+2=0\)

\(\Leftrightarrow2x^3.\left(x+2\right)-x^2.\left(x+2\right)+x.\left(x+2\right)+\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right).\left(2x^3-x^2+x+1\right)=0\)

\(\Leftrightarrow\left(x+2\right).\left(2x^3+x^2-2x^2-x+2x+1\right)=0\)

\(\Leftrightarrow\left(x+2\right).\left(2x+1\right).\left(x^2-x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\2x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\x=-\frac{1}{2}\end{cases}}}\)

\(\text{Vì }x^2-x+1=x^2-x+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Vậy phương trình có nghiệm \(S=\left\{-2,-\frac{1}{2}\right\}\)

29 tháng 1 2019

a, Đặt pt trên là (1)

Nhận thấy : x = 0 không là nghiệm của (1)

Với x khác 0 , chia cả 2 vế của (1) cho \(x^2\) ta được :

\(2x^2+3x-1+\dfrac{3}{x}+\dfrac{2}{x^2}=0\)

\(\Leftrightarrow2\left(x^2+\dfrac{1}{x^2}\right)+3\left(x+\dfrac{1}{2}\right)-1=0\circledast\)

Đặt \(x+\dfrac{1}{x}=y\)

\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2=y^2\)

\(\Leftrightarrow x^2+2x.\dfrac{1}{2}+\dfrac{1}{x^2}=4x^2\)

\(\Leftrightarrow x^2+\dfrac{1}{x^2}=4^2-2\)

\(\Rightarrow\circledast\Leftrightarrow2\left(y^2-2\right)+3y-1=0\)

\(\Leftrightarrow2y^2+3y-5=0\)

\(\Leftrightarrow2y^2-2y+5y-5=0\)

\(\Leftrightarrow\left(2y+5\right)\left(y-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=\dfrac{-5}{2}\\y=1\end{matrix}\right.\)

\(\)+ Với \(y=\dfrac{-5}{2}\Rightarrow x+\dfrac{1}{x}=\dfrac{-5}{2}\)

\(\Leftrightarrow\dfrac{2x^2+2}{2x}=\dfrac{-5x}{2x}\)

\(\Leftrightarrow2x^2+5x+2=0\)

\(\Leftrightarrow2x^2+x+4x+2=0\)

\(\Leftrightarrow x\left(2x+1\right)+2\left(2x+1\right)=0\)

\(\Leftrightarrow\left(2x+1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x=-2\end{matrix}\right.\)

+ Với \(y=1\Rightarrow x+\dfrac{1}{x}=1\)

\(\Leftrightarrow\dfrac{x^2+1}{x}=\dfrac{x}{x}\)

\(\Leftrightarrow x^2+1=x\)

\(\Leftrightarrow x^2-x=-1\)

\(\Leftrightarrow x^2-2x.\dfrac{1}{2}+\dfrac{1}{4}=-1+\dfrac{1}{4}\)

\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2=-\dfrac{3}{4}\)

=> Vô nghiệm

Vậy phương trình có tập nghiệm là \(S=\left\{-2;-\dfrac{1}{2}\right\}\)

29 tháng 1 2019

a) (2x^4 +4x^3) -(x^3+2x^2 ) +(x^2+2x )+(x+2)

= 2x^3 (x+2)-x^2(x+2)+x(x+2)+(x+2)

=(x+2)(2x^3-x^2+x+1)

x+2=0 -> x=-2

hoặc 2x^3-x^2+x +1 vô no

b)câu b đặt có 1 no là 2 từ đó phân tích ra

8 tháng 2 2023

kh hiểu bn ơi

8 tháng 2 2023

vậy mik đăng lại

31 tháng 12 2018

14 tháng 8 2015

cái bài này tìm nghiệm là ra mà bạn

31 tháng 12 2016

câu trả lời của thu hương rất hay!

Mình làm được khổ nỗi lại chưa biết nghiệm là gì? @ thu hương có thể giải thích cho minh không

 hiihhi  

7 tháng 9 2021

a) \(x^4-13x^2+36=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-2\right)\left(x+2\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=2\\x=-2\\x=-3\end{matrix}\right.\)

b) \(5x^4+3x^2-8=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(5x^2+8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)( do \(5x^2+8\ge8>0\))

 

c: Ta có: \(2x^4+3x^2+2=0\)

Đặt \(a=x^2\)

Phương trình tương đương là: \(2a^2+3a+2=0\)

\(\text{Δ}=3^2-4\cdot2\cdot2=9-16=-7\)

Vì Δ<0 nên phương trình vô nghiệm

Vậy: Phương trình \(2x^4+3x^2+2=0\) vô nghiệm

22 tháng 7 2021

b) 5x(x-2000)-x+2000=0

\(\Rightarrow5x\left(x-2000\right)-\left(x-2000\right)=0\\ \Rightarrow\left(x-2000\right)\left(5x-1\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x-2000=0\\5x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0+2000\\5x=0+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2000\\5x=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2000\\x=\dfrac{1}{5}\end{matrix}\right.\)

22 tháng 7 2021

Ai giúp minh làm bài 5 phía trên với

 

Để giải các phương trình này, chúng ta sẽ làm từng bước như sau: 1. 13x(7-x) = 26: Mở ngoặc và rút gọn: 91x - 13x^2 = 26 Chuyển về dạng bậc hai: 13x^2 - 91x + 26 = 0 Giải phương trình bậc hai này để tìm giá trị của x. 2. (4x-18)/3 = 2: Nhân cả hai vế của phương trình với 3 để loại bỏ mẫu số: 4x - 18 = 6 Cộng thêm 18 vào cả hai vế: 4x = 24 Chia cả hai vế cho 4: x = 6 3. 2xx + 98x2022 = 98x2023: Rút gọn các thành phần: 2x^2 + 98x^2022 = 98x^2023 Chia cả hai vế cho 2x^2022: x + 49 = 49x Chuyển các thành phần chứa x về cùng một vế: 49x - x = 49 Rút gọn: 48x = 49 Chia cả hai vế cho 48: x = 49/48 4. (x+1) + (x+3) + (x+5) + ... + (x+101): Đây là một dãy số hình học có công sai d = 2 (do mỗi số tiếp theo cách nhau 2 đơn vị). Số phần tử trong dãy là n = 101/2 + 1 = 51. Áp dụng công thức tổng của dãy số hình học: S = (n/2)(a + l), trong đó a là số đầu tiên, l là số cuối cùng. S = (51/2)(x + (x + 2(51-1))) = (51/2)(x + (x + 100)) = (51/2)(2x + 100) = 51(x + 50) Vậy, kết quả của các phương trình là: 1. x = giá trị tìm được từ phương trình bậc hai. 2. x = 6 3. x = 49/48 4. S = 51(x + 50)

nhầm

 

21 tháng 2 2018

\(3x^2-13x+4=0\)

\(\Leftrightarrow3x^2-12x-x+4=0\)

\(\Leftrightarrow\left(3x^2-12x\right)-\left(x-4\right)=0\)

\(\Leftrightarrow3x\left(x-4\right)-\left(x-4\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(x-4\right)=0\)

\(\Leftrightarrow x=\dfrac{1}{3}\) hoặc \(x=4\)

21 tháng 2 2018

ĐKXĐ: x khác 4

\(\dfrac{2x^3+5x^2-3x}{x^2-x-12}=0\)

\(\Leftrightarrow\dfrac{2x^3+6x^2-x^2-3x}{x^2+3x-4x-12}=0\)

\(\Leftrightarrow\dfrac{\left(2x^3+6x^2\right)-\left(x^2+3x\right)}{\left(x^2+3x\right)-\left(4x+12\right)}=0\)

\(\Leftrightarrow\dfrac{2x^2\left(x+3\right)-x\left(x+3\right)}{x\left(x+3\right)-4\left(x+3\right)}=0\)

\(\Leftrightarrow\dfrac{\left(2x^2-x\right)\left(x+3\right)}{\left(x-4\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\dfrac{2x^2-x}{x-4}=0\)

\(\Leftrightarrow\dfrac{x\left(2x-1\right)}{x-4}=0\)

\(\Leftrightarrow x\left(2x-1\right)=0\)

\(\Leftrightarrow x=0\) hoặc \(x=\dfrac{1}{2}\)