Tìm n \(\in\)Z để:
A=\(\frac{n+3}{n+2}\)có giá trị là số nguyên âm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để A là phân số thì \(n-3\ne0\)
hay \(n\ne3\)
b) Để A=-1/2 thì \(\dfrac{7}{n-3}=\dfrac{-1}{2}\)
\(\Leftrightarrow-1\left(n-3\right)=14\)
\(\Leftrightarrow n-3=-14\)
hay n=-11(thỏa ĐK)
Vậy: Để A=-1/2 thì n=-11
\(a,2.\left|x+1\right|-3=5\)
\(\Rightarrow2.\left|x+1\right|=5+3\)
\(\Rightarrow2.\left|x+1\right|=8\)
\(\Rightarrow\left|x+1\right|=8:2\)
\(\Rightarrow\left|x+1\right|=4\)
\(\Rightarrow\orbr{\begin{cases}x+1=4\\x+1=-4\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-5\end{cases}}\)
Vậy : x = 3 hoặc x = -5
b) Để A có giá trị nguyên thì n + 1 \(⋮\)n - 2
Ta có : n + 1 = ( n - 2 ) + 3
=> n + 1 \(⋮\)n - 2
khi ( n - 2 ) + 3 \(⋮\) n - 2
=> 3 \(⋮\)n - 2
=> n - 2 \(\in\)Ư ( 3 ) = { 1 ; -1 ; 3 ; -3 }
Với n - 2 = 1 => n = 3
Với n - 2 = -1 => n = 1
Với n - 2 = 3 => n = 5
Với n - 2 = -3 => n = -1
Vậy : n \(\in\){ 3 ; 1 ; 5 ; -1 }
Để \(\frac{n^2+n+2}{n+1}\) có giá trị là số nguyên thì \(\left(n^2+n+2\right)⋮\left(n+1\right)\)
Ta có : n2 + n + 2 = n x n + n + 2 = n x ( n + 1 ) + 2
=> n x ( n + 1 ) + 2 chia hết cho n + 1
Ta thấy : n x ( n + 1 ) chia hết cho n + 1
=> 2 chia hết cho n + 1
Hay \(\left(n+1\right)\inƯ_2\)
Ư(2) = { 1 ; -1 ; 2 ; -2 }
Ta có bảng sau :
n + 1 | 1 | -1 | 2 | -2 |
n | 0 | -2 | 1 | -3 |
Vậy để A có giá trị là số nguyên thì \(n\in\) { 0 ; -2 ; 1 ; -3 }
Để \(A\in Z\)thì \(n^2+n+2⋮n+1\)
\(\Rightarrow n\left(n+1\right)+2⋮n+1\)
\(\Rightarrow2⋮n+1\)
\(\Rightarrow n+1\left\{-2;2;-1;1\right\}\)
\(\Rightarrow n\in\left\{-3;1;-2;0\right\}\)
Để C có giá trị nguyên
=>6n - 3 chia hết cho 3n + 2
=>6n + 4 - 4 - 3 chia hết cho 3n + 2
=>2.(3n + 2) - 7 chia hết cho 3n + 2
=> 7 chia hết cho 3n + 2
=> 3n + 2 thuộc Ư(7) = {1 ; -1; 7 ; -7}
Ta có bảng sau :
3n + 2 | 1 | -1 | 7 | -7 |
n | -1/3 | -1 | 5/3 | -3 |
Vì n thuộc Z
=> n = -1 ; -3
a, Để A là phân số khi n - 3 \(\ne\)0<=> n \(\ne\)3
b, Để A nguyên khi \(n+1⋮n-3\Leftrightarrow n-3+4⋮n-3\Leftrightarrow4⋮n-3\)
\(\Rightarrow n-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
n - 3 | 1 | -1 | 2 | -2 | 4 | -4 |
n | 4 | 2 | 5 | 1 | 7 | -1 |
a) Để A là phân số thì \(n-3\ne0\)
hay \(n\ne3\)
b) Để A là số nguyên thì \(n+1⋮n-3\)
\(\Leftrightarrow4⋮n-3\)
\(\Leftrightarrow n-3\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{4;2;5;1;7;-1\right\}\)
\(A=\frac{n+1}{n-2}=\frac{n-2+2+1}{n-2}=\frac{n-2+3}{n-2}=\frac{n-2}{n-2}+\frac{3}{n-2}=2+\frac{3}{n-2}\)
Để A là số nguyên thì \(\frac{3}{n-2}\)là số nguyên
\(\frac{3}{n-2}\)là 1 số nguyên khi và chỉ khi \(n-2\)là ước của 3
\(\Rightarrow n-2=\left(-1;1;-3;3\right)\)
\(n-2=1\Rightarrow n=1+2=3\)
\(n-2=\left(-1\right)\Rightarrow n=\left(-1\right)+2=1\)
\(n-2=3\Rightarrow n=3+2=5\)
\(n-2=\left(-3\right)\Rightarrow n=\left(-3\right)+2=\left(-1\right)\)
Vậy \(n\)là \(3;1;5;\left(-1\right)\)để A là phân số
Xin lổi
Để A là giá trị lớn nhất nhé ! nhưng vẩn nhớ k cho tớ nhé
\(\text{(n+3)/(n+2) là số nguyên âm}\)
\(\Leftrightarrow n+3⋮n+2\Leftrightarrow1⋮n+2\Leftrightarrow n+2\in\left\{-1;1\right\}\Leftrightarrow n\in\left\{-3;-1\right\}\)
\(+,n=-3\Rightarrow\text{(n+3)/(n+2)=0/-1 (loại)}\)
\(+,n=-1\Rightarrow A=\text{(n+3)/(n+2)=2/1=2(loại)}\)
\(\text{Vậy ko tìm đc n t/m điều kiện}\)
Ta có : \(\frac{n+3}{n+2}=\frac{n+2+1}{n+2}=1+\frac{1}{n+2}\)
Để A nguyên thì n+2 thuộc ước của 1 là 1;-1
Do A nguyên âm nên 1/n+2 phải bé hoặc bằng 2
Nên A không có giá trị nguyên âm
nhé