Tìm x thuộc Z sao cho : 2xy + x + 2y = -4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-7\right)\left(x+3\right)< 0\)
Do tích chúng bé hơn 0 nên 1 trong 2 số là số âm.
Mà \(x-7< x+3\)nên x-7 là số âm.
\(\Rightarrow\hept{\begin{cases}x-7< 0\\x+3>0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x< 7\\x>-3\end{cases}\Rightarrow}-3< x< 7\)
\(2xy+x+2y=-4\)
\(\Rightarrow x\left(2y+1\right)+\left(2y+1\right)=-3\)
\(\Rightarrow\left(2y+1\right)\left(x+1\right)=-3=\left(-1\right)\cdot3=1\cdot\left(-3\right)=3\left(-1\right)=\left(-3\right)\cdot1\)
Tự lập bảng nha
\(2xy+x+2y=-4\)
\(\Rightarrow x\left(2y+1\right)+\left(2y+1\right)=-4+1\)
\(\Rightarrow\left(x+1\right)\left(2y+1\right)=-3\)
\(\Rightarrow\left(x+1\right);\left(2y+1\right)\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)
Xét bảng
x+1 | 1 | -1 | 3 | -3 |
2y+1 | -3 | 3 | -1 | 1 |
x | 0 | -2 | 2 | -4 |
y | -2 | 1 | -1 | 0 |
Vậy...........................
\(2xy+x+2y=-4\)
\(\Rightarrow x\left(2y+1\right)+\left(2y+1\right)=-4+1\)
\(\Rightarrow\left(x+1\right)\left(2y+1\right)-3\)
Vì x;y thuộc Z \(\Rightarrow\left(x+1\right);\left(2y+1\right)\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)
Xét bảng
x+1 | 1 | -1 | 3 | -3 |
2y+1 | -3 | 3 | -1 | 1 |
x | 0 | -2 | 2 | -4 |
y | -2 | 1 | -1 | 0 |
Vậy......................
x2 - 2xy + 2y2 + 2x - 6y + 4 = 0
<=> [ ( x2 - 2xy + y2 ) + 2( x - y ) + 1 ] + ( y2 - 4y + 4 ) - 1 = 0
<=> [ ( x - y )2 + 2( x - y ) + 1 ] + ( y - 2 )2 - 1 = 0
<=> ( x - y + 1 )2 + ( y - 2 )2 - 1 = 0
<=> ( x - y + 1 )2 + ( y - 2 )2 = 1
Nhận thấy rằng VT là tổng của hai bình phương
=> VP cũng phải là tổng của hai bình phương
Ta có : 1 = 12 + 02
= (-1)2 + 02
Ta xét 4 trường hợp sau :
1.\(\hept{\begin{cases}\left(x-y+1\right)^2=1^2\\\left(y-2\right)^2=0^2\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)
2. \(\hept{\begin{cases}\left(x-y+1\right)^2=\left(-1\right)^2\\\left(y-2\right)^2=0^2\end{cases}}\Rightarrow x=y=2\)
3. \(\hept{\begin{cases}\left(x-y+1\right)^2=0^2\\\left(y-2\right)^2=1^2\end{cases}\Rightarrow}\hept{\begin{cases}x=2\\y=3\end{cases}}\)
4. \(\hept{\begin{cases}\left(x-y+1\right)^2=0^2\\\left(y-2\right)^2=\left(-1\right)^2\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=1\end{cases}}\)
Vậy ( x ; y ) = { ( 0 ; 2 ) , ( 2 ; 2 ) , ( 2 ; 3 ) , ( 0 ; 1 ) }
\(x^2-2xy+y^2+2x-6y+4=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2-2y+2x+1\right)+\left(y^2-4y+4\right)=1\)
\(\Leftrightarrow\left(x-y+1\right)^2+\left(y-2\right)^2=1\)
Mà \(x;y\in Z\); \(\left(x-y+1\right)^2\ge0;\left(y-2\right)^2\ge0\)
pt <=> \(\orbr{\begin{cases}\left(x-y+1\right)^2=0\\\left(y-2\right)^2=1\end{cases}}\) hoặc \(\orbr{\begin{cases}\left(x-y+1\right)^2=1\\\left(y-2\right)^2=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x-y=-1\\y=3\end{cases}}\) hoặc \(\orbr{\begin{cases}x-y=0\\y=2\end{cases}}\)
<=> x = 2 ; y = 3 hoặc x = y = 2 ( tm x ; y thuộc Z )
Vậy các cặp số x ; y thỏa mãn pt trên là : ( 2 ; 3 ) ; ( 2 ; 2 )
2xy+x+2y=-4
2xy+x+2y+4=0
(2xy+2y)+(x+4)=0
2y(x+1)+(x+1)+3=0
[2y(x+1)+(x+1)]=-3
(x+1)(2y+1)=-3
làm nốt...
sai thì thui nhé!
\(2xy+x+2y=-4\)
\(\Rightarrow x\left(2y+1\right)+\left(2y+1\right)=-4+1=-3\)
\(\Rightarrow\left(2y+1\right)\left(x+1\right)=-3\)
\(\Rightarrow\left(2y+1\right)\left(x+1\right)=-1.3=3.\left(-1\right)-3.1=1.\left(-3\right)\)
Đến đây bn lập bảng đề tìm đk x,y