x^2-2x^2-4xy^2+x
giúp em với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`(x+2)/(x-2)-2/(x^2-2x)=1/x`
ĐK:`x ne 0,x ne +-2`
Nhân 2 vế với `x^2-2x ne 0` ta có pt
`x(x+2)-2=x(x-2)`
`<=>x^2+2x-2=x^2-2x`
`<=>4x=2`
`<=>x=1/2.(tm)`
Vậy `S={1/2}`
\(a,\Leftrightarrow\left|x+\dfrac{2}{5}\right|=\dfrac{7}{4}\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{2}{5}=\dfrac{7}{4}\left(x\ge-\dfrac{2}{5}\right)\\x+\dfrac{2}{5}=-\dfrac{7}{4}\left(x< -\dfrac{2}{5}\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{27}{20}\left(tm\right)\\x=-\dfrac{43}{20}\left(tm\right)\end{matrix}\right.\)
\(b,\Leftrightarrow\left|x-\dfrac{13}{10}\right|=\dfrac{13}{10}\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{13}{10}=\dfrac{13}{10}\left(x\ge\dfrac{13}{10}\right)\\x-\dfrac{13}{10}=-\dfrac{13}{10}\left(x< \dfrac{13}{10}\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{13}{5}\left(tm\right)\\x=0\left(tm\right)\end{matrix}\right.\)
\(c,\Leftrightarrow\left|\dfrac{3}{4}-\dfrac{1}{2}x\right|=\dfrac{1}{2}\Leftrightarrow\left[{}\begin{matrix}\dfrac{3}{4}-\dfrac{1}{2}x=\dfrac{1}{2}\left(x\le\dfrac{3}{2}\right)\\\dfrac{1}{2}x-\dfrac{3}{4}=\dfrac{1}{2}\left(x>\dfrac{3}{2}\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\left(tm\right)\\x=\dfrac{5}{2}\left(tm\right)\end{matrix}\right.\)
\(d,\Leftrightarrow\left|5-2x\right|=4\Leftrightarrow\left[{}\begin{matrix}5-2x=4\left(x\le\dfrac{5}{2}\right)\\2x-5=4\left(x>\dfrac{5}{2}\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\left(tm\right)\\x=\dfrac{9}{2}\left(tm\right)\end{matrix}\right.\)
\(đ,\Leftrightarrow\left\{{}\begin{matrix}x-3,5=0\\x-1,3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3,5\\x=1,3\end{matrix}\right.\left(vô.lí\right)\Leftrightarrow x\in\varnothing\)
\(e,\Leftrightarrow\left\{{}\begin{matrix}x-2021=0\\x-2022=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2021\\x=2022\end{matrix}\right.\left(vô.lí\right)\Leftrightarrow x\in\varnothing\)
\(f,\Leftrightarrow\left|x\right|=\dfrac{1}{3}-x\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}-x\left(x\ge0\right)\\x=x-\dfrac{1}{3}\left(x< 0\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{6}\left(tm\right)\\0x=-\dfrac{1}{3}\left(vô.lí\right)\end{matrix}\right.\Leftrightarrow x=\dfrac{1}{6}\)
\(g,\Leftrightarrow\left[{}\begin{matrix}x-2=x\left(x\ge2\right)\\2-x=x\left(x< 2\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}0x=2\left(vô.lí\right)\\x=1\left(tm\right)\end{matrix}\right.\Leftrightarrow x=1\)
Đề trước đó:
(x-7)(x+1)-(x-3)^2=(3x-5)(3x+5)-(3x+1)^2+(x-2)^2-x
<=>x^2+x-7x-7-x^2+6x-9=9x^2-25-9x^2-6x-1+x^2-4x+4-x
<=>x^2-11x-6=0
<=>x^2-2x. 11/2 + 121/4-145/4=0
<=>(x-11/2)^2=145/4
<=>|x-11/2|=căn(145)/2
<=>x=[11+-căn(145)]/2
=x^2+2x+1+4y^2-4xy+x^2+y^2-y+1/4+3/4
=(x+1)^2+(2y-x)^2+(y-1/2)^2+3/4>=3/4>0 với mọi x,y
\(\text{a) }x^2+4y^2+2x-4y-4xy-24\\ \\ =\left(x^2-4xy+4y^2\right)+\left(2x-4y\right)-24\\ \\ =\left(x-2y\right)^2+2\left(x-2y\right)-24\\ \\ =\left(x-2y\right)\left(x-2y+2\right)-24\\ =\left(x-2y+1-1\right)\left(x-2y+1+1\right)-24\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\left(1\right)\)
Đặt \(\left(x-2y+1\right)=a\left(\text{*}\right)\)
Thay \(\) \(\left(\text{*}\right)\) vào \(\left(1\right)\)
\(\text{Ta được : }\left(1\right)=\left(a-1\right)\left(a+1\right)-24\\ \\ =a^2-1-24\\ \\ =a^2-25\\ \\ =\left(a+5\right)\left(a-5\right)\text{ }\text{ }\text{ }\text{ }\left(2\right)\)
Thay \(\left(\text{*}\right)\) vào \(\left(2\right)\)
\(\text{Ta lại được : }\left(2\right)=\left(x-2y+1+5\right)\left(x-2y+1-5\right)\\ \\=\left(x-2y+6\right)\left(x-2y-4\right)\)