K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2019

A B C D M N Q P H O

Xét hình bình hành ABCD ngoại tiếp (O)

Theo đầu bài ta suy ra các cạnh của hình bình hành là tiếp tuyến của (O)

Gọi M , N , P , Q là các tiếp điểm của đường tròn với các cạnh như hình vẽ

Theo tính chất tiếp tuyến có: CM = CN ; AP = AQ ; BM = BQ ; PD = DN

=> CM + BM + AP + PD = CN + DN + AQ + BQ

=> 2BC = 2AB

=> BC = AB

Kẻ AH \(\perp\)BC ta có: AB > AH (Đường xiên , hình chiếu)

                         Dấu "=" xảy ra khi ^ABC = 90o

Ta có : OM ⊥ BC ; OP ⊥ AD , AD // BC

=> P , O  , M thẳng hàng

Do đó AH = PM = 2r

\(S_{ABCD}=AH.BC=2r.AB\ge2r.AH=2r.2r=4r^2\)

Dấu "=" xảy ra \(\Leftrightarrow AH\equiv AB\Leftrightarrow\widehat{ABC}=90^o\)

Mà ABCD là hình bình hành

=> ABCD là hình vuông

Vậy trong các hình bình hành ngoại tiếp đường tròn (O;r) thì hình vuông có diện tích nhỏ nhất và bằng 4r2

hình đâu bn

ko có hình sao biết đc!!

18 tháng 6 2018

Gọi BD ∩ AC=I

Ta có  B A I ^ = A C D ^ = E B D ^ = 1 2 s đ E D ⏜

Áp dụng bổ đề Þ ĐPCM

4 tháng 5 2023

Cho em xin đáp án câu c bài này ah 

a: góc AHE+góc EAH=90 độ

góc ACB+góc EAH=90 độ

Do đó: góc AHE=góc ACB=1/2*sđ cung AB

=>góc BHM=1/2*sđ cung AB

=>góc BHM=góc BMH

=>ΔBMH cân tại B

mà BC là đường cao

nên BC là trung trực của HM

b: Xét (O) có

ΔABI nội tiếp

AI là đường kính

Do đó: ΔABI vuông tại B

=>BI vuông góc AB

=>BI//CH

Xét (O) có

ΔACI nội tiếp

AI là đường kính

Do đó: ΔACI vuông tại C

=>CI vuông góc AC

=>CI//BH

Xét tứ giác BHCI có

BH//CI

BI//CH

=>BHCI là hình bình hành

6 tháng 11 2017

 .

3). Theo trên, ta có  B E = C D  mà  C E = C F ⇒ B C = D F .

Ta có CI là đường phân giác góc BCD, nên  I B I D = C B C D = D F B E ⇒ I B . B E = I D . D F .

Mà CO là trung trực EF và  I ∈ C O , suy ra IE=IF.

Từ hai đẳng thức trên, suy ra  I B . B E . E I = I D . D F . F I .

23 tháng 1 2018

2). Từ  Δ O B E = Δ O D C ⇒ O E = O C .

Mà CO là đường cao tam giác cân CEF , suy ra OE=OF.

Từ đó  O E = O C = O F , vậy O là tâm đường tròn ngoại tiếp tam giác .