K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: VT=a + 2019b/a - b

=(a- b+ 2020b)/a -b

=1 +  2020b/a -b    

Biến đổi tương tự vế phải, ta được:

1 +   2020d/ c -d   

=> 1 +   2020b/a -b= 1 +   2020d/c -d

=>2020b/a -b= 2020d/c -d

=>b/a -b= d/c -d

=>b/a = d/c

=>a/b= c/d (đpcm)

26 tháng 1 2019

cảm ơ bạn phạm minh đức nhá

5 tháng 12 2019

Đặt bằng k nhé

5 tháng 12 2019

Dăm ba mấy bài đặt k:v

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

Ta có:

\(\frac{2018a^2+2019b^2}{2018a^2-2019b^2}=\frac{2018b^2k^2+2019b^2}{2018b^2k^2-2019b^2}=\frac{b^2\left(2018k^2+2019\right)}{b^2\left(2018k^2-2019\right)}=\frac{2018k^2+2019}{2018k^2-2019}\)

\(\frac{2018c^2+2019d^2}{2018c^2-2019d^2}=\frac{2018d^2k^2+2019d^2}{2018d^2k^2-2019d^2}=\frac{d^2\left(2018k^2+2019\right)}{d^2\left(2018k^2-2019\right)}=\frac{2018k^2+2019}{2018k^2-2019}\)

Từ đó \(\frac{2018a^2+2019b^2}{2018a^2-2019b^2}=\frac{2018c^2+2019d^2}{2018c^2-2019d^2}\)

30 tháng 10 2019

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{2020a}{2020c}=\frac{2019b}{2019d}=\frac{2020a+2019b}{2020c+2019d}=\frac{2020a-2019b}{2020c-2019d}\)

\(\Rightarrow\frac{2020a+2019b}{2020a-2019b}=\frac{2020c+2019d}{2020c-2019d}\)

20 tháng 10 2018

Từ \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

                  \(\Rightarrow\frac{2018a}{2018c}=\frac{2019b}{2019d}\)

Áp dụng t/c DTSBN : \(\frac{2018a}{2018c}=\frac{2019b}{2019d}=\frac{2018a-2019b}{2018c-2019d}=\frac{2018a+2019b}{2018c+2019d}\)

                  Cái này đến đây là đề sai nhé ! Đề phải cho là C/m cái (2018a-2019b).(2018c+2019d) = (2018a-2019b)(2018c+2019d) mới đúng

18 tháng 3 2020

\(\frac{a}{b}=\frac{c}{d}=t=>\hept{\begin{cases}a=bt\\c=dt\end{cases}}\)

vt\(=\left(\frac{a+b}{c+d}\right)^2=\left(\frac{bt+b}{dt+d}\right)^2=\frac{b^2\left(t+1\right)^2}{d^2\left(t+1\right)^2}=\frac{b^2}{d^2}\left(1\right)\)

vt\(=\frac{2018a^2+2019b^2}{2018c^2+2019d^2}=\frac{2018\left(bt\right)^2+2019b^2}{2018\left(dt\right)^2+2019d^2}=\frac{b^2\left(2018t^2+2019\right)}{d^2\left(2018t^2+2019\right)}=\frac{b^2}{d^2}\left(2\right)\)

từ (1) zà (2)

=>\(\left(\frac{a}{b}+\frac{c}{d}\right)^2=\frac{2018a^2+2019b^2}{2018c^2+2019d^2}\left(dpcm\right)\)

4 tháng 12 2019

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\)

\(\Rightarrow\frac{2018a^2}{2018c^2}=\frac{2019b^2}{2019d^2}=\frac{2018a^2+2019b^2}{2018c^2+2019d^2}=\frac{2018a^2-2019b^2}{2018c^2-2019d^2}\)

\(\Rightarrow\frac{2018a^2+2019b^2}{2018a^2-2019b^2}=\frac{2018c^2+2019d^2}{2018c^2-2019d^2}\left(dpcm\right)\)

14 tháng 11 2021

Làm giúp mik với,ngày mai mik phải nộp bài cho cô rồi:(

20 tháng 11 2019

Với \(a+b+c+d=0\)

\(\Rightarrow a+b=-\left(c+d\right);b+c=-\left(d+a\right);c+d=-\left(a+b\right);d+a=-\left(b+c\right)\)

Khi đó \(M=-1-1-1-1=-4\)

Với \(a+b+c+d\ne0\)

Áp dụng dãy tỉ số bằng nhau

\(\frac{2019a+b+c+d}{a}=\frac{a+2019b+c+d}{b}=\frac{a+b+2019c+d}{c}=\frac{a+b+c+2019d}{d}\)

\(=\frac{2022\left(a+b+c+d\right)}{a+b+c+d}=2022\)

\(\Rightarrow a=b=c=d\)

\(\Rightarrow M=4\)